Necroptosis-related lncRNA signature predicts prognosis and immune response for cervical squamous cell carcinoma and endocervical adenocarcinomas.

来自 PUBMED

作者:

Lin ZZou JSui XYao SLin LWang JZhao J

展开

摘要:

Necroptosis, a programmed form of necrotic cell death, plays critical regulatory roles in the progression and metastatic spread of cancers such as cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, there are few articles systematically analyzing the necroptosis-related long non-coding RNAs (NRlncRNAs) correlated with CESC patients. Both RNA-sequencing and clinical data of CESC patients are downloaded from TCGA database in this study. Pearson correlation analysis, least absolute shrinkage, operator algorithm selection and Cox regression model are employed to screen and create a risk score model of eleven-NRlncRNAs (MIR100HG, LINC00996, SNHG30, LINC02688, HCG15, TUBA3FP, MIAT, DBH-AS1, ERICH6-AS1SCAT1, LINC01702) prognostic. Thereafter, a series of tests are carried out in sequence to evaluate the model for independent prognostic value. Gene set enrichment analytic paper, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analytic paper make it clear that immune-related signaling pathways are very rich in the high-risk subgroup. Additionally, the prognostic risk score model is correlated to immune cell infiltration, potential immune checkpoint, immune function, immune micro-environmental and m6A-related gene. Mutation frequency in mutated genes and survival probability trend are higher in the low-risk subgroup in most of test cases when compared to the high-risk subgroup. This study constructs a renewed prognostic model of eleven-NRlncRNAs, which may make some contribution to accurately predicting the prognosis and the immune response from CESC patients, and improve the recognition of CESC patients and optimize customized treatment regimens to some extent.

收起

展开

DOI:

10.1038/s41598-022-20858-5

被引量:

20

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(132)

参考文献(70)

引证文献(20)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读