Regulation of the macrophage-hepatic stellate cell interaction by targeting macrophage peroxisome proliferator-activated receptor gamma to prevent non-alcoholic steatohepatitis progression in mice.
摘要:
Macrophages display remarkable plasticity and can interact with surrounding cells to affect hepatic immunity and tissue remodelling during the progression of liver diseases. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a critical role in macrophage maturation, polarization and metabolism. In this study, we investigated the role of PPARγ in macrophage-hepatic stellate cell (HSC) interaction during non-alcoholic steatohepatitis (NASH) development. Wild-type, Ppargfl/fl and PpargΔLyz2 mice were fed a methionine- and choline-deficient (MCD) diet to induce NASH. Depletion of macrophages was performed using an injection of gadolinium chloride intraperitoneally. PPARγ-overexpressing or PPARγ-knockout macrophages were stimulated with saturated fatty acid (SFA) and cocultured with HSCs in a conditioned medium or the transwell coculture system. Depletion of macrophages inhibited HSC activation and ameliorated NASH progression in MCD diet-fed mice. Coculturing HSCs with macrophages or culturing HSCs in a macrophage-conditioned medium-facilitated HSC activation, and this effect was magnified when macrophages were metabolically activated by SFA. Moreover, the absence of PPARγ in macrophages enhanced metabolic activation, promoting the migration and activation of HSCs through IL-1β and CCL2. In contrast, overexpression of PPARγ in macrophages obtained the opposite effects. In vivo, macrophage-specific PPARγ knockout affected the phenotype of hepatic macrophages and HSCs, involving the MAPK and NLRP3/caspase-1/IL-1β signalling pathways. Infiltrating hepatic monocyte-derived macrophages became the predominant macrophages in NASH liver, especially in PpargΔLyz2 mice, paralleling with aggravated inflammation and fibrosis. Regulating macrophage PPARγ affected the metabolic activation of macrophages and their interaction with HSCs. Macrophage-specific PPARγ may be an attractive therapeutic target for protecting against NASH-associated inflammation and fibrosis.
收起
展开
DOI:
10.1111/liv.15441
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(368)
参考文献(0)
引证文献(7)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无