Role of XBP1 in regulating the progression of non-alcoholic steatohepatitis.
摘要:
Non-alcoholic steatohepatitis (NASH) is associated with the dysregulation of lipid metabolism and hepatic inflammation, though the underlying mechanisms remain unclear. We aimed to investigate the role of X-box binding protein-1 (XBP1) in the progression of NASH. Human liver tissues obtained from patients with NASH and controls were used to assess XBP1 expression. NASH models were developed in hepatocyte-specific Xbp1 knockout (Xbp1ΔHep), macrophage-specific Xbp1 knockout (Xbp1ΔMf), macrophage-specific Nlrp3 knockout, and wild-type (Xbp1FL/FL or Nlrp3FL/FL) mice fed with a high-fat diet for 26 weeks or a methionine/choline-deficient diet for 6 weeks. The expression of XBP1 was significantly upregulated in liver samples from patients with NASH. Hepatocyte-specific Xbp1 deficiency inhibited the development of steatohepatitis in mice fed the high-fat or methionine/choline-deficient diets. Meanwhile, macrophage-specific Xbp1 knockout mice developed less severe steatohepatitis and fibrosis than wild-type Xbp1FL/FL mice in response to the high-fat or methionine/choline-deficient diets. Macrophage-specific Xbp1 knockout mice showed M2 anti-inflammatory polarization. Xbp1-deleted macrophages reduced steatohepatitis by decreasing the expression of NLRP3 and secretion of pro-inflammatory cytokines, which mediate M2 macrophage polarization in macrophage-specific Xbp1 knockout mice. Steatohepatitis was less severe in macrophage-specific Nlrp3 knockout mice than in wild-type Nlrp3FL/FL mice. Xbp1-deleted macrophages prevented hepatic stellate cell activation by decreasing expression of TGF-β1. Less fibrotic changes were observed in macrophage-specific Xbp1 knockout mice than in wild-type Xbp1FL/FL mice. Inhibition of XBP1 suppressed the development of NASH. XBP1 regulates the development of NASH. XBP1 inhibitors protect against steatohepatitis. Thus, XBP1 is a potential target for the treatment of NASH. XBP1 is a transcription factor that is upregulated in liver tissues of patients with non-alcoholic steatohepatitis (NASH). Conditional knockout of Xbp1 in hepatocytes resulted in decreased lipid accumulation in mice, while genetic deletion of Xbp1 in macrophages ameliorated nutritional steatohepatitis and fibrosis in mice. Pharmacological inhibition of XBP1 protects against steatohepatitis and fibrosis, highlighting a promising therapeutic strategy for NASH.
收起
展开
DOI:
10.1016/j.jhep.2022.02.031
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(401)
参考文献(0)
引证文献(40)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无