-
Anadenanthera colubrina (Vell) Brenan: Ethnobotanical, phytochemical, pharmacological and toxicological aspects.
Anadenanthera colubrina (Vell.) Brenan is an endemic tree to South America and different parts of it are used by the population for the treatment of various diseases, as well as in indigenous rituals. This species has high pharmacological potential but may present toxic potential due to the presence of psychotropic compounds.
To review published studies with the species A. colubrina regarding ethnobotanical, phytochemical, pharmacological and toxicological aspects, as well as discuss perspectives for new research and protection of this species.
A literature review was performed by accessing published articles on databases such as: PubMed, Science Direct, Scielo, Scopus, Taylor and Francis online, Springer Link, National Center for Biotechnology Information (NCBI), ACS Publications, Chemspider and Google Scholar. The keywords used were: "Anadenanthera colubrina" or "Mimosa colubrina" or "Piptadenia colubrina" or "Piptadenia macrocarpa" or "Piptadenia grata" or "Anadenanthera macrocarpa" and "medicinal plants" or "pharmacological" or "phytochemicals" or "traditional use" or "toxicological" or "ethnobotanical" or "pre-clinical trial" or "clinical". Articles found by database searches and search engines were screened at four stages: (i) title screening, (ii) locality screening, (iii) abstract screening, and (iv) full text. Other articles found through supplementary searches were screened in the full text whenever available. Each article was assessed by three reviewers at the title and abstract screening stages, except for those found in Portuguese databases that were assessed by the native reviewer.
This robust tree has been popularly useful for agroeconomic, medicinal and as a hallucinogen in religious rituals. According to the published studies, the main parts of the plant are the bark and seeds that are mostly used for respiratory conditions and as entheogens, respectively. It is a rich traditional herbal medicine with many pharmacological properties such as anti-inflammatory, antinociceptive, antidiarrheal, wound healing, antimicrobial, antitumoral, antioxidant, antiaddictive, insecticide and allelopathic that were described in in vitro and in vivo assays, and approximately 56 compounds were identified, suggesting a therapeutic potential for this species. Although most relate to medicinal uses, these are preliminaries and do not show the mechanism of action. The phytochemical assays showed the presence of phenolic compounds, flavonoids, triterpenes, steroids and alkaloids. Some of the compounds are anadanthoflavone, which is exclusive to this species, and no pharmacological or toxicological studies have yet demonstrated this compound. Another important compound is bufotenine which was isolated from seeds and is related to hallucinogenic and antiviral activity. The extracts made from leaves, bark, gum, and fruits appear to be safe, according to both in vivo and in vitro toxicology testing, which all shown low toxicity. Due to the presence of bufotenine in the seeds, it can be toxic, however, it was not found in toxicological assays with the seed extracts.
Therefore, part of the studies confirms the popular use of A. colubrina, however, more assays with isolated compounds and with the different extracts are necessary to corroborate other uses and the mechanism of action of their pharmacological effects needs to discuss in more detail. Therefore, the present review would be identified the gaps and suggests further studies oriented to validate the popular use. Thus, it must be noted that the use of this species must be controlled in order to minimize the environmental impact, as most of the pharmacological potential was shown with the bark and seeds. Due to its wide use in folk medicine, it is part of the Brazilian medicinal species with priority for conservation.
Delices M
,Muller JAI
,Arunachalam K
,Martins DTO
... -
《-》
-
Plumeria rubra L.- A review on its ethnopharmacological, morphological, phytochemical, pharmacological and toxicological studies.
Plumeria rubra L. (Apocynaceae) is a deciduous, commonly ornamental, tropical plant grown in home premises, parks, gardens, graveyards, because of its beautiful and attractive flowers of various colours and size. The different parts of the plant are used traditionally to treat various diseases and conditions like leprosy, inflammation, diabetic mellitus, ulcers, wounds, itching, acne, toothache, earache, tongue cleaning, pain, asthma, constipation and antifertility.
The main aim of this review is to provide an overview and critically analyze the reported ethnomedical uses, phytochemistry, pharmacological activities and toxicological studies of P. rubra and to identify the remaining gaps and thus supply a basis for further investigations. The review also focuses towards drawing attention of people and researchers about the wide spread pharmaceutical properties of the plant for its better utilization in the coming future.
All the relevant data and information on P. rubra was gathered using various databases such as PubMed, Springer, Taylor and Francis imprints, NCBI (National Center for Biotechnology Information), Science direct, Google scholar, Chemspider, SciFinder, research and review articles from peer-reviewed journals and unpublished data such as Phd thesis, etc. Some other 'grey literature' sources such as webpages, ethnobotanical books, chapters, wikipedia were also studied.
More than 110 chemical constituents have been isolated from P. rubra including iridoids, terpenoids, flavonoids and flavonoid glycosides, alkaloids, glycosides, fatty acid esters, carbohydrates, animo acids, lignan, coumarin, volatile oils, etc. The important chemical constituents responsible for pharmacological activities of the plant are fulvoplumierin, plumieride, rubrinol, lupeol, oleanolic acid, stigmasterol, taraxasteryl acetate, plumieride-p-E-coumarate, rubranonoside, rubrajalellol, plumericin, isoplumericin, etc. The plant possess a wide range of pharmacological activities present namely antibacterial, antiviral, anti-inflammatory, antipyretic, antidiabetic, hepatoprotective, anticancer, anthelmintic, antifertility and many other activities.
P. rubra is a valuable medicinal source and further study in this topic can validate the traditional and ethnobotanical use of the plant. However, many aspects of the plant have not been studied yet. The pharmacological activity of active chemical constituent isolated from the plant is proven only for a couple of activities hence, lack of bio-guided isolation strategies is observed. Further studies on bioavailability, pharmacokinetics, mechanism of action and structural activity relationship studies of isolated pure compounds will contribute more in understanding their pharmacological effects. Higher doses of plant extracts are administered to experimental animals, therefore their toxicity and side effects in humans are needed to be thoroughly studied, although no side effect or toxicity is seen or observed in experimental animals. Studies are also essential to investigate the long term in vivo toxicity and clinical efficacy of the plant.
Bihani T
《-》
-
A comprehensive review of Pfaffia glomerata botany, ethnopharmacology, phytochemistry, biological activities, and biotechnology.
Pfaffia glomerata (Spreng.) Pedersen, Amaranthaceae, is found in South America, mainly in Brazil, where it is considered a species of great medicinal interest owing to its popular use as a tonic, aphrodisiac, anti-inflammatory, and analgesic. These properties can be attributed to the presence of the phytosteroid, 20-Hydroxyecdysone (β-ecdysone), the main compound found in its roots.
This review aims to provide information about the botanical characteristics, ethnomedicinal uses, the phytochemistry, the biological activities, and the biotechnology of P. glomerata, an important species to local communities and groups researching medicinal plants of South America.
The information available on P. glomerata was collected from scientific databases (ScienceDirect, PubMed/MEDLINE, SciELO, and Scopus) until June 7, 2023, using the search terms "Pfaffia glomerata", "Pfaffia glomerata (Spreng.) Pedersen", and "Brazilian ginseng". The review includes studies that evaluated the botanical, ethnopharmacological, and phytochemical aspects, biological properties, nutraceutical uses, and the application of biotechnology for improving the biosynthesis of metabolites of interest.
A total of 207 studies were identified, with 81 articles read in full. Seventy-six studies were included for qualitative synthesis. Overall, 40 compounds belonging to different classes are presented in this review, including ecdysteroids, triterpenes, saponins, flavonoids, anthraquinones, tannins, coumarins, alkaloids, and polysaccharides. Among them, flavonoids, anthraquinones, tannins, coumarins, and alkaloids were only putatively identified. β-Ecdysone, triterpenes, saponins, and polysaccharides are the chemical components most frequently identified and isolated from P. glomerata and possibly responsible for ethnopharmacological use and the biological activities of this species, with important in vitro and in vivo activities, such as anti-inflammatory, antidepressant, aphrodisiac, analgesic, gastroprotective, antioxidant, and prebiotic.
This review summarizes discussions about the P. glomerata species, highlighting its ethnopharmacological, chemical, biotechnological, and nutraceutical importance. New scientific studies on this species are encouraged in the search for new therapeutic molecules with pharmaceutical potential and nutraceutical applications.
Cotrim Ribeiro ST
,Gancedo NC
,Braz de Oliveira AJ
,Correia Gonçalves RA
... -
《-》
-
A comprehensive review of medicinal Toxicodendron (Anacardiaceae): Botany, traditional uses, phytochemistry and pharmacology.
Comprising of about 30 species, the genus Toxicodendron (Anacardiaceae) are mainly distributed in East Asia and North America. Among them, 13 species have been traditionally used as folk medicines in Asia and other parts of the world to treat blood diseases, abnormal bleeding, skin diseases, gastrointestinal diseases, liver diseases, bone injury, lung diseases, neurological diseases, cardiovascular diseases, tonic, cancer, eye diseases, menstrual irregularities, inflammation, rheumatism, diabetes mellitus, rattlesnake bite, internal parasites, contraceptive, vomiting and diarrhea.
To date, no comprehensive review on Toxicodendron has been published and the scientific basis of the traditional medicinal benefits of Toxicodendron have been less reported. Therefore, this review aims to provide a reference for further research and development on medicinal purpose of Toxicodendron by summarizing the works (from 1980 to 2023), and focusing on its botany, traditional uses, phytochemistry and pharmacology.
The names of the species were from The Plant List Database (http://www.theplantlist.org), World Flora Online (http://www.worldfloraonline.org), Catalogue of Life Database (https://www.catalogueoflife.org/) and Plants for A Future Database (https://pfaf.org/user/Default.aspx). And the search terms "Toxicodendron" and "the names of 31 species and their synonyms" were used to search for information from electronic databases such as Web of Science, Scopus, Google Scholar, Science Direct, PubMed, Baidu Scholar, Springer, and Wiley Online Library. Moreover, PhD and MSc dissertations were also used to support this work.
These species on Toxicodendron are widely used in folkloric medicine and modern pharmacological activities. So far, approximately 238 compounds, mainly phenolic acids and their derivatives, urushiols, flavonoids and terpenoids, are extracted and isolated from Toxicodendron plants, commonly, T. trichocarpum, T. vernicifluum, T. succedaneum, and T. radicans. Among them, phenolic acids and flavonoids are the main compound classes that show pharmacological activities in Toxicodendron plants both in vitro and in vivo. Furthermore, the extracts and single compounds of these species show a wide range of activities, such as antioxidant, antibacterial, anti-inflammatory, anti-tumor, liver protection, fat reduction, nerve protection, and treatment of blood diseases.
Selected species of Toxicodendron have been used as herbal medicines in the Southeast Asian for a long time. Furthermore, some bioactive constituents have been identified from them, so plants in this genus may be potential new drugs. The existing research on Toxicodendron has been reviewed, and the phytochemistry and pharmacology provide theoretical basis for some of the traditional medicinal uses. Therefore, in this review, the traditional medicinal, phytochemical and modern pharmacology of Toxicodendron plants are summarized to help future researchers to find new drug leads or to get a better understanding of structure-activity relationships.
Hu X
,Wang M
,Cai F
,Liu L
,Cheng Z
,Zhao J
,Zhang Q
,Long C
... -
《-》
-
Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology.
Paeonia, which comprises approximately 52 shrubs or herbaceous perennials around the world, is the only genus of the Paeoniaceae and is pervasively distributed in Asia, southern Europe, and North America. Many species of the genus Paeonia have been used for centuries in ethnomedical medical systems.
The present study aims to summarize the traditional uses, clinical applications, and toxicology of the genus Paeonia, to critically evaluate the state-of-the-art phytochemical and pharmacological studies of this genus published between 2011 and 2020, and to suggest directions for further in-depth research on Paeonia medicinal resources.
Popular and widely used databases such as PubMed, Scopus, Science Direct, and Google Scholar were searched using the various search strings; from these searches, a number of citations related to the traditional uses, phytochemistry, biological activities, clinical application, and toxicology of the genus Paeonia were retrieved.
The use of 21 species, 2 subspecies, and 7 varieties of the genus Paeonia as traditional herbal remedies has been reported, and many ethnomedicinal uses, such as the treatment of hematemesis, blood stasis, dysmenorrhea, amenorrhea, epilepsy, spasms, and gastritis, have been recorded. The roots and root bark are the most frequently reported parts of the plants used in medicinal applications. In phytochemical investigations, 451 compounds have been isolated from Paeonia plants to date, which contains monoterpenoid glucosides, flavonoids, tannins, stilbenes, triterpenoids and steroids, and phenols. Studies of their pharmacological activities have revealed the antioxidant, anti-inflammatory, antitumour, antibacterial, antiviral, cardiovascular protective, and neuroprotective properties of the genus Paeonia. In particular, some bioactive extracts and compounds (total glucosides of peony (TGP), paeonol, and paeoniflorin) have been used as therapeutic drugs or tested in clinical trials. In addition to the "incompatibility" of the combined use of "shaoyao" and Veratrum nigrum L. roots in traditional Chinese medicine theory, Paeonia was considered to have no obvious toxicity based on the available toxicological tests.
A large number of phytochemical and pharmacological reports have indicated that Paeonia is an important medicinal herb resource, and some of its traditional uses including the treatment of inflammation and cardiovascular diseases and its use as a neuroprotective agent, have been partially confirmed through modern pharmacological studies. Monoterpenoid glucosides are the main active constituents. Although many compounds have been isolated from Paeonia plants, the biological activities of only a few of these compounds (paeoniflorin, paeonol, and TGP) have been extensively investigated. Some paeoniflorin structural analogues and resveratrol oligomers have been preliminarily studied. With the exception of several species (P. suffruticosa, P. ostii, P. lactiflora, and P. emodi) that are commonly used in folk medicine, many medicinal species within the genus do not receive adequate attention. Conducting phytochemical and pharmacological experiments on these species can provide new clues that may lead to the discovery of medicinal resources. It is necessary to identify the effective phytoconstituents of crude extracts of Paeonia that displayed pharmacological activities by bioactivity-guided isolation. In addition, comprehensive plant quality control, and toxicology and pharmacokinetic studies are needed in the future studies.
Li P
,Shen J
,Wang Z
,Liu S
,Liu Q
,Li Y
,He C
,Xiao P
... -
《-》