-
Plumeria rubra L.- A review on its ethnopharmacological, morphological, phytochemical, pharmacological and toxicological studies.
Plumeria rubra L. (Apocynaceae) is a deciduous, commonly ornamental, tropical plant grown in home premises, parks, gardens, graveyards, because of its beautiful and attractive flowers of various colours and size. The different parts of the plant are used traditionally to treat various diseases and conditions like leprosy, inflammation, diabetic mellitus, ulcers, wounds, itching, acne, toothache, earache, tongue cleaning, pain, asthma, constipation and antifertility.
The main aim of this review is to provide an overview and critically analyze the reported ethnomedical uses, phytochemistry, pharmacological activities and toxicological studies of P. rubra and to identify the remaining gaps and thus supply a basis for further investigations. The review also focuses towards drawing attention of people and researchers about the wide spread pharmaceutical properties of the plant for its better utilization in the coming future.
All the relevant data and information on P. rubra was gathered using various databases such as PubMed, Springer, Taylor and Francis imprints, NCBI (National Center for Biotechnology Information), Science direct, Google scholar, Chemspider, SciFinder, research and review articles from peer-reviewed journals and unpublished data such as Phd thesis, etc. Some other 'grey literature' sources such as webpages, ethnobotanical books, chapters, wikipedia were also studied.
More than 110 chemical constituents have been isolated from P. rubra including iridoids, terpenoids, flavonoids and flavonoid glycosides, alkaloids, glycosides, fatty acid esters, carbohydrates, animo acids, lignan, coumarin, volatile oils, etc. The important chemical constituents responsible for pharmacological activities of the plant are fulvoplumierin, plumieride, rubrinol, lupeol, oleanolic acid, stigmasterol, taraxasteryl acetate, plumieride-p-E-coumarate, rubranonoside, rubrajalellol, plumericin, isoplumericin, etc. The plant possess a wide range of pharmacological activities present namely antibacterial, antiviral, anti-inflammatory, antipyretic, antidiabetic, hepatoprotective, anticancer, anthelmintic, antifertility and many other activities.
P. rubra is a valuable medicinal source and further study in this topic can validate the traditional and ethnobotanical use of the plant. However, many aspects of the plant have not been studied yet. The pharmacological activity of active chemical constituent isolated from the plant is proven only for a couple of activities hence, lack of bio-guided isolation strategies is observed. Further studies on bioavailability, pharmacokinetics, mechanism of action and structural activity relationship studies of isolated pure compounds will contribute more in understanding their pharmacological effects. Higher doses of plant extracts are administered to experimental animals, therefore their toxicity and side effects in humans are needed to be thoroughly studied, although no side effect or toxicity is seen or observed in experimental animals. Studies are also essential to investigate the long term in vivo toxicity and clinical efficacy of the plant.
Bihani T
《-》
-
The genus Nepeta: Traditional uses, phytochemicals and pharmacological properties.
Nepeta is a multiregional genus of the "Lamiaceae" (Labiatae or Mint) family. Species of Nepeta are a valuable part of traditional medicine and used extensively, particularly in the Himalayan region of India (Uttarakhand, Himachal Pradesh, Jammu and Kashmir, Leh-Ladakh), Pakistan (Khyber Pakhtunkhwaand Pakistani Kashmir), Nepal (Baglund district), also in China and hilly regions of Turkey and Iran. Nepeta species are extensively used as a remedy against a variety of ailments and conditions like chicken pox, tuberculosis, malaria, pneumonia, influenza, measles, stomach disorders, eye complaints, respiratory disorders, asthma, colds, coughs etc. AIM OF THE REVIEW: The main aim of this review is to present a comprehensive and detailed study on traditional uses, pharmacology, phytochemistry, toxicology of Nepeta species and suggest future direction on the design and conduct of various preparations, either alone or in blends with prevailing conventional remedies. The review also emphasizes encouraging researchers towards the wide range of pharmaceutical applications of the various species of Nepeta for their better use and exploration in the future.
All the relevant data and information on different species of Nepeta were assembled using different databases, such as Science Direct, Springer, PubMed, Taylor and Francis imprints, Chemspider, Google scholar, review and research articles from peer-reviewed journals and unpublished data. Some select 'grey literature' sources viz. ethnobotanical books, chapters, Wikipedia and webpages were also studied.
A variety of bioactive secondary metabolites and nutraceuticals has been isolated from various species of Nepeta. These bioactive compounds belong to different classes of secondary metabolites, such as phenolic acids and their glycosides (rosmarinic acid, gallic acid, caffeic acid), flavonoids and their glycosides (cirsimaritin, salvigenin, luteolin, apigenin), iridoids (nepetalactones and their derivatives), terpenoids (1,8-cineole, linalool, β-caryophyllene, germacrene D, parnapimaro, β-amyrin, oleanolic acid, ursolic acid), steroids (β-sitosterol, stigmasterol), lignans, amino acids, carbohydrates, volatile oils, etc. The species of the genus Nepeta possess a variety of pharmacological activities namely anti-inflammatory, anti-nociceptive, anti-alzheimer, anticancer and cytotoxic, antioxidant, immunomodulatory, antimicrobial, antifungal, insecticidal and along with other biological activities.
The species of the genus Nepeta contains a rich source of various bioactive compounds, which are well tolerated as traditional medicines. In fact, different species of Nepeta are widely used in a variety of traditional medicinal systems all around the world. Owing to the variety of pharmacological properties of Nepeta species, more comprehensive and inclusive clinical trials are necessary for the utilization of different Nepeta species against the treatment of a wide range of ailments. There are also various other uses such as food, cosmetic and agriculture that can be investigated or explored in future. Some of the major domains that can be explored within this genus are the investigation of different species for their unexplored biological potential, isolation and characterization of new bioactive constituents and finally, investigation of new applications and possible commercialization of these bioactive leads. No doubt, there are various viable research domains outside those discussed above, but presently for the purposes of this review we will only emphasize the activities herein.
Sharma A
,Cooper R
,Bhardwaj G
,Cannoo DS
... -
《-》
-
Indian Sarsaparilla (Hemidesmus indicus): Recent progress in research on ethnobotany, phytochemistry and pharmacology.
Hemidesmus indicus (L.) R. Br. ex Schult. (Apocynaceae) is widely used in traditional medicine in the different parts of the Indian subcontinent due to the various biological activities attributed to its different parts, especially the roots. It has traditionally been used for treating snakebites, scorpion stings, diabetes, urinary diseases, dyspnea, menorrhagia, oligospermia, anorexia, fever, abdominal colic and pain, dysentery, diarrhea, cough, rheumatism, headache, inflammation, pyrosis, skin diseases, leprosy, sexually transmitted diseases and cancer. In Ayurveda, the plant is used in the treatment of bone-loss, low body weight, fever, stress, topical wound and psoriasis. Besides, Ayurvedic literature also depicts its use as anti-atherogenic, anti-spasmodic, memory enhancing, immunopotentiating and anti-inflammatory agents.
In this review, we aim to present a comprehensive update on the ethnopharmacology, phytochemistry, specific pharmacology, and toxicology of H. indicus and its bioactive metabolites. Possible directions for future research are also outlined in brief.
Popular and widely used international databases such as PubMed, Scopus, Science Direct, Google Scholar and JSTOR were searched and traditional literature were consulted using the various search strings to retrieve a number of citations related to the ethnopharmacology, biological activity, toxicology, quality control and phytochemistry of H. indicus. All studies on the ethnobotany, phtochemistry, pharmacology, and toxicology of the plant up to 2019 were included in this review.
H. indicus has played an important role in traditional Indian medicine (including Ayurveda) and also in European medicine. The main pharmacological properties of H. indicus include hepatoprotective, anti-cancer, anti-diabetic, antioxidant, neuroprotective, anti-ophidian, cardioprotective, nephroprotective, anti-ulcerogenic, anti-inflammatory, and antimicrobial properties. Phytochemical evaluations of the root have revealed the presence of aromatic aldehydes and their derivatives, phenolics, triterpenoids and many other compounds, some of which were attributed to its bioactivity. This review also compiles a list of Ayurvedic formulations and commercial preparations where H. indicus has been used as an active ingredient. We have included the critical assessment of all the papers cited in this manuscript based on experimental observation and other important points which reflect the loop-holes of research strategy and ambiguity in the papers reviewed in this manuscript.
The study presents an exhaustive and updated review on the traditional, pharmacological and phytochemical aspects of H. indicus with notes on its quality control and toxicological information. Although the crude extracts of H. indicus exhibit an array of pharmacological activities, it is high time to identify more active phyto-constituents by bioactivity-guided isolation besides elucidating their structure-activity relationship. More designed investigations are needed to comprehend the multi-target network pharmacology, to clarify the molecular mode of action and to ascertain the efficacious doses of H. indicus. Moreover, H. indicus is not fully assessed on the basis of its safety and efficacy on human. We hope this review will compile and improve the existing knowledge on the potential utilization of H. indicus in complementary and alternative medicine.
Nandy S
,Mukherjee A
,Pandey DK
,Ray P
,Dey A
... -
《-》
-
Recent trends in phytochemistry, ethnobotany and pharmacological significance of Alchornea cordifolia (Schumach. & Thonn.) Muell. Arg.
Alchornea cordifolia (Schumach. & Thonn.) Muell. Arg. (Euphorbiaceae) (A. cordifolia) is widely distributed throughout tropical Africa, where it is used extensively in traditional medicine. Conditions for which the plant has enjoyed wide use are: coughs, gonorrhoea, infertility, prostatitis, bacterial infections, diarrhoea, ulcers, pain, inflammation, fever and bronchial troubles. This review summarizes the achievements of the investigations in traditional uses, ethnobotany, phytochemistry, biological activities and toxicological profile of A. cordifolia; this review also describes the shortcomings of studies on this herbal drug and thus serves as the basis of further scientific research and development of this traditional herbal drug.
A. cordifolia-related information was collected from various resources including published articles in peer-reviewed journals, unpublished materials, textbooks, government survey reports and scientific databases such as Scifinder®, Pubmed, Science Direct, Wiley, Springer, ACS, Scielo, Web of Science and other web search instruments (Google, Yahoo), published on the subject from 1950 to 2016. 'The Plant List' (www.theplantlist.org) and 'Kew Royal Botanic Gardens' (mpns.kew.org) were used to validate the scientific name of the plant.
The literature revealed several reports on traditional uses, biological activities, chemical constituents and toxicological evaluation of A. cordifolia. The phytochemical information indicates identification of 95 compounds including fatty acids, terpenoids, flavonoids, phenolic acids, alkaloids, which exhibited various pharmacological activities such as wound healing, anti-inflammation, anticancer, antioxidant, immunomodulation, antidiarrhoeal, antimicrobial, antidepressant, hepatoprotective, antiplasmodial and anxiolytic. However, there are still significant gaps in the completeness of our understanding of A. cordifolia bioactivity, therapeutic value, and roles played by each of the numerous phytoconstituents.
The present review indicated that A. cordifolia is a valuable medicinal plant with multiple pharmacological effects. However, further research on the pharmacological mechanism of action of this plant is recommended in order to unravel the pharmacokinetics, pharmacodynamics, clinical relevance and toxicity of its extracts as well as constituents.
Boniface PK
,Ferreira SB
,Kaiser CR
《-》
-
Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: A review.
Arctotis arctotoides (Asteraceae) is part of the genus Arctotis. Arctotis is an African genus of approximately 70 species that occur widely in the African continent with diverse medicinal values. This plant is used for the treatment of indigestion and catarrh of the stomach, epilepsy, topical wounds and skin disorders among the ethnic groups in South Africa and reported to have a wide spectrum of pharmacological properties.
The aim of the present review is to appraise the botany, traditional uses, phytochemistry, pharmacological potential, analytical methods and safety issues of A. arctotoides. Additionally, this review will help to fill the existing gaps in knowledge and highlight further research prospects in the field of phytochemistry and pharmacology.
Information on A. arctotoides was collected from various resources, including books on African medicinal herbs and Zulu medicinal plants, theses, reports and the internet databases such as SciFinder, Google Scholar, Pubmed, Scopus, Web of Science, and Mendeley by using a combination of various meaningful keywords. This review surveys the available literature of the species from 1962 to April 2017.
In vitro and in vivo studies of the medicinal properties of A. arctotoides were reviewed. The main isolated and identified compounds were reported as sesquiterpenes, farnesol derivatives, germacranolide, guaianolides and some steroids, of which, nine were reported as antimicrobial. Monoterpenoids and sesquiterpenoids were the predominant essential oil compound classes of the leaves, flowers, stems and roots. The present review revealed potential pharmacological properties such as anti-oxidant, antibacterial, antifungal and anticancer activities of plant extracts as well as isolated compounds. Moreover, the review reports the safety profile (toxicity) of the crude extracts that had been screened on brine shrimps, rats and human cell lines.
The present review has focused on the phytochemistry, botany, ethnopharmacology, biological activities and toxicological information of A. arctotoides. On the basis of reported data, A. arctotoides has emerged as a good source of natural medicine for the treatment of microbial infections, skin diseases, anti-inflammatory and anticancer agents and also provides new insights for further isolation of new bioactive compounds, especially the discovery of antimicrobial, anti-inflammatory and anticancer novel therapeutic lead drug molecules. Additionally, intensive investigations regarding pharmacological properties, safety assessment and efficacy with their mechanism of action could be future research interests before starting clinical trials for medicinal practices.
Saleh-E-In MM
,Van Staden J
《-》