Stratified proportional win-fractions regression analysis.

来自 PUBMED

作者:

Wang TMao L

展开

摘要:

The recently proposed proportional win-fractions (PW) model extends the two-sample win ratio analysis of prioritized composite endpoints to regression. Its proportionality assumption ensures that the covariate-specific win ratios are invariant to the follow-up time. However, this assumption is strong and may not be satisfied by every covariate in the model. We develop a stratified PW model that adjusts for certain prognostic factors without setting them as covariates, thus bypassing the proportionality requirement. We formulate the stratified model based on pairwise comparisons within each stratum, with a common win ratio across strata modeled as a multiplicative function of the covariates. Correspondingly, we construct an estimating function for the regression coefficients in the form of an incomplete U $$ U $$ -statistic consisting of within-stratum pairs. Two types of asymptotic variance estimators are developed depending on the number of strata relative to the sample size. This in particular allows valid inference even when the strata are extremely small, such as with matched pairs. Simulation studies in realistic settings show that the stratified model outperforms the unstratified version in robustness and efficiency. Finally, real data from a major cardiovascular trial are analyzed to illustrate the potential benefits of stratification. The proposed methods are implemented in the R package WR, publicly available on the Comprehensive R Archive Network (CRAN).

收起

展开

DOI:

10.1002/sim.9570

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(20)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读