A class of proportional win-fractions regression models for composite outcomes.

来自 PUBMED

作者:

Mao LWang T

展开

摘要:

The win ratio is gaining traction as a simple and intuitive approach to analysis of prioritized composite endpoints in clinical trials. To extend it from two-sample comparison to regression, we propose a novel class of semiparametric models that includes as special cases both the two-sample win ratio and the traditional Cox proportional hazards model on time to the first event. Under the assumption that the covariate-specific win and loss fractions are proportional over time, the regression coefficient is unrelated to the censoring distribution and can be interpreted as the log win ratio resulting from one-unit increase in the covariate. U-statistic estimating functions, in the form of an arbitrary covariate-specific weight process integrated by a pairwise residual process, are constructed to obtain consistent estimators for the regression parameter. The asymptotic properties of the estimators are derived using uniform weak convergence theory for U-processes. Visual inspection of a "score" process provides useful clues as to the plausibility of the proportionality assumption. Extensive numerical studies using both simulated and real data from a major cardiovascular trial show that the regression methods provide valid inference on covariate effects and outperform the two-sample win ratio in both efficiency and robustness. The proposed methodology is implemented in the R-package WR, publicly available from the Comprehensive R Archive Network (CRAN).

收起

展开

DOI:

10.1111/biom.13382

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(120)

参考文献(14)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读