The Anti-inflammation Property of Olfactory Ensheathing Cells in Neural Regeneration After Spinal Cord Injury.

来自 PUBMED

作者:

Jiang CWang XJiang YChen ZZhang YHao DYang H

展开

摘要:

Neural regeneration has troubled investigators worldwide in the past decades. Currently, cell transplantation emerged as a breakthrough targeted therapy for spinal cord injury (SCI) in the neurotrauma field, which provides a promising strategy in neural regeneration. Olfactory ensheathing cells (OECs), a specialized type of glial cells, is considered as the excellent candidate due to its unique variable and intrinsic regeneration-supportive properties. In fact, OECs could support olfactory receptor neuron turnover and axonal extension, which is essential to maintain the function of olfactory nervous system. Hitherto, an increasing number of literatures demonstrate that transplantation of OECs exerts vital roles in neural regeneration and functional recovery after neural injury, including central and peripheral nervous system. It is common knowledge that the deteriorating microenvironment (ischemia, hypoxia, scar, acute and chronic inflammation, etc.) resulting from injured nervous system is adverse for neural regeneration. Interestingly, recent studies indicated that OECs could promote neural repair through improvement of the disastrous microenvironments, especially to the overwhelmed inflammatory responses. Although OECs possess unusual advantages over other cells for neural repair, particularly in SCI, the mechanisms of OEC-mediated neural repair are still controversial with regard to anti-inflammation. Therefore, it is significant to summarize the anti-inflammation property of OECs, which is helpful to understand the biological characteristics of OECs and drive future studies. Here, we mainly focus on the anti-inflammatory role of OECs to make systematic review and discuss OEC-based therapy for CNS injury.

收起

展开

DOI:

10.1007/s12035-022-02983-4

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(166)

参考文献(85)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读