Transplantation of activated olfactory ensheathing cells by curcumin strengthens regeneration and recovery of function after spinal cord injury in rats.

来自 PUBMED

作者:

Guo JCao GYang GZhang YWang YSong WXu YMa TLiu RZhang QHao DYang H

展开

摘要:

The pro-regeneration capabilities of olfactory ensheathing cells (OECs) remain controversial. However, little is known regarding whether the transplantation of activated OECs by curcumin (CCM) elicits neural regeneration and functional recovery after spinal cord injury (SCI) in rats, and the possible molecular mechanisms have never been investigated. Primary OECs were treated with 1μM CCM for 1-3 days. Concomitantly, activated OECs were transplanted into the traumatic spinal cord of Sprague Dawley rats. One to 9 weeks after surgery, the assessment of behavior recovery was made using the Basso, Beattie and Bresnahan (BBB) locomotor scale; electrophysiology tests, such as somatosensory evoked potential (SEP) and motor evoked potential (MEP); and the cylinder test. Pathological study, including hematoxylin and eosin staining and immunofluorescence staining for neurofilaments (NFs), was conducted at 5 weeks post-surgery. In addition, activation profiles of OECs by CCM stimulus were assessed and levels of transglutaminase-2 (TG2) and phosphatidylserine receptor (PSR) in OECs stimulated by CCM were further determined. CCM remarkably enhanced OEC proliferation, improved cell viability and strengthened secretion of neurotrophins and anti-inflammatory factors. In addition, the levels of TG2 and PSR in CCM-treated OECs were significantly elevated. More importantly, beyond 1 week post-transplantation of CCM-treated OECs into lesioned spinal cord, BBB score and cylinder test score were significantly higher than that seen in the other three groups and a more postponed latent SEP and MEP period was noted. Furthermore, 5 weeks later, numerous, well-arranged NF-positive nerve fibers, lesions with less cavities and reduced levels of pro-inflammatory cytokines were found in activated OEC implantation groups. In addition, the number of NF-positive fibers was significantly improved and the number and area of both cavities and gliotic scars were remarkably decreased compared with the corresponding controls. Transplantation of OECs activated by CCM promotes neural regeneration and functional recovery following SCI, the underlying mechanisms of which are intimately associated with the elevated production of neurotrophic factors and anti-inflammatory factors in OECs stimulated by CCM as well as reduced pro-inflammatory cytokines from the post-contusion spinal cord. In addition, OECs activated by CCM were mediated through TG2 and PSR.

收起

展开

DOI:

10.1016/j.jcyt.2020.03.002

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(429)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读