Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency.
摘要:
Despite that Convolutional Neural Networks (CNNs) have achieved promising performance in many medical image segmentation tasks, they rely on a large set of labeled images for training, which is expensive and time-consuming to acquire. Semi-supervised learning has shown the potential to alleviate this challenge by learning from a large set of unlabeled images and limited labeled samples. In this work, we present a simple yet efficient consistency regularization approach for semi-supervised medical image segmentation, called Uncertainty Rectified Pyramid Consistency (URPC). Inspired by the pyramid feature network, we chose a pyramid-prediction network that obtains a set of segmentation predictions at different scales. For semi-supervised learning, URPC learns from unlabeled data by minimizing the discrepancy between each of the pyramid predictions and their average. We further present multi-scale uncertainty rectification to boost the pyramid consistency regularization, where the rectification seeks to temper the consistency loss at outlier pixels that may have substantially different predictions than the average, potentially due to upsampling errors or lack of enough labeled data. Experiments on two public datasets and an in-house clinical dataset showed that: 1) URPC can achieve large performance improvement by utilizing unlabeled data and 2) Compared with five existing semi-supervised methods, URPC achieved better or comparable results with a simpler pipeline. Furthermore, we build a semi-supervised medical image segmentation codebase to boost research on this topic: https://github.com/HiLab-git/SSL4MIS.
收起
展开
DOI:
10.1016/j.media.2022.102517
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(584)
参考文献(0)
引证文献(10)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无