Nociceptive chemical hypersensitivity in the spinal cord of a rat reserpine-induced fibromyalgia model.

来自 PUBMED

作者:

Ejiri YUta DOta HMizumura KTaguchi T

展开

摘要:

The pathological mechanisms of fibromyalgia (FM) are largely unknown. Recently, a rat reserpine-induced pain model showing exaggerated pain-related behaviors to mechanical and thermal stimuli has been used in FM research. However, the model has not been fully characterized. Here, we investigated nociceptive hypersensitivity to chemical stimuli and its spinal mechanisms to further characterize the model. The rat model was induced by administering reserpine to the nervous system. Nociceptive behaviors to chemical stimuli were quantified using the formalin pain test, and neuronal activation of the stimuli was examined using spinal c-Fos immunohistochemistry and electrophysiological recordings of superficial dorsal horn (SDH) neurons. The duration of pain-related behaviors was prolonged in both phases I (0-5 min) and II (10-60 min) and the interphase; and the number of c-Fos-immunoreactive nuclei increased in laminae I-II, III-IV, and V-VI at the spinal segments L3-L5 on the side ipsilateral to the formalin injection, and these factors were significantly and positively correlated. The action potentials of SDH neurons induced by formalin injection were markedly increased in rats treated with reserpine. These results demonstrate that pain-related behaviors are facilitated by noxious chemical stimuli in a rat reserpine-induced FM model, and that the behavioral hypersensitivity is associated with hyperactivation of SDH neurons.

收起

展开

DOI:

10.1016/j.neures.2022.03.005

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(123)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读