Prevalence of neural epidermal growth factor-like 1- and exostosin 1/exostosin 2-associated membranous nephropathy: a single-center retrospective study in Japan.

来自 PUBMED

作者:

Iwakura TEma CIsobe SFujikura TOhashi NKato AYasuda H

展开

摘要:

Membranous nephropathy (MN) is the leading cause of nephrotic syndrome in adults. We previously reported that the prevalence of phospholipase A2 receptor (PLA2R)- and thrombospondin type 1 domain containing 7A (THSD7A)-associated MN patients in Japan is 52.7% and 9.1%, respectively. In addition to PLA2R and THSD7A, we assessed the presence of newly discovered target antigens, neural epidermal growth factor-like 1 (NELL-1), semaphorin 3B (SEMA3B), and exostosin 1/exostosin 2 (Ext1/Ext2), in renal specimens from patients with primary and secondary MN by immunohistochemistry. We found enhanced glomerular staining of PLA2R, THSD7A, NELL-1, and Ext1/Ext2 in 53.6%, 8.7%, 1.5%, and 13.0% of the renal samples, respectively, in patients with primary MN. None of the patient specimens showed enhanced staining of SEMA3B. Enhanced glomerular staining of PLA2R, NELL-1, and Ext1/Ext2 was detected in 5.7%, 8.6%, and 22.9% of the patients with secondary MN, respectively. Based on our findings, we recommend the assessment of PLA2R, THSD7A and NELL-1 in addition to clinical information and IgG4 staining to differentiate between primary and secondary MN. This would aid in distinguishing secondary MN patients from primary MN patients who coincidentally have some secondary characteristics.

收起

展开

DOI:

10.1038/s41598-022-07037-2

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(140)

参考文献(39)

引证文献(18)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读