-
Associations between exposure to a mixture of phenols, parabens, and phthalates and sex steroid hormones in children 6-19 years from NHANES, 2013-2016.
Humans are typically exposed to mixtures of environmental endocrine-disrupting chemicals simultaneously, but most studies have considered only a single chemical or a class of similar chemicals.
We examined the association of exposure to mixtures of 7 chemicals, including 2 phenols [bisphenol A (BPA) and bisphenol S (BPS)], 2 parabens [methylparaben (MeP) and propyl paraben (PrP)], and 3 phthalate metabolites [Mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), mono (carboxyoctyl) phthalate (MCOP)] with sex steroid hormones.
A total of 1179 children aged 6-19 years who had complete data on both 7 chemicals and sex steroid hormones of estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG) were analyzed from the U.S. National Health and Nutrition Examination Survey 2013-2016. Free androgen index (FAI) calculated by TT/SHBG, and the ratio of TT to E2 (TT/E2) were also estimated. Puberty was defined if TT ≥ 50 ng/dL in boys, E2 ≥ 20 pg/mL in girls; otherwise prepuberty was defined. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were performed to estimate the associations of individual chemical or chemical mixtures with sex hormones.
The linear regression showed that 2 phenols, 2 parabens, and 3 phthalate metabolites were generally negatively associated with E2, TT, FAI, and TT/E2, while positively with SHBG. Moreover, these associations were more pronounced among pubertal than prepubertal children. The aforementioned associations were confirmed when further applying WQS and BKMR, and the 3 phthalates metabolites were identified to be the most heavily weighing chemicals.
Exposure to phenols, parabens, and phthalates, either individuals or as a mixture, was negatively associated with E2, TT, FAI and TT/E2, while positively with SHBG. Those associations were stronger among pubertal children.
Hu P
,Pan C
,Su W
,Vinturache A
,Hu Y
,Dong X
,Ding G
... -
《-》
-
Associations between organophosphate esters and sex hormones among 6-19-year old children and adolescents in NHANES 2013-2014.
Organophosphate esters (OPEs) are a class of alternative replacements for polybrominated diphenyl ethers. In vitro and in vivo studies suggested that OPEs may disrupt the homeostasis of sex steroid hormones. However, human evidence in children and adolescents is limited.
We conducted a cross-sectional analysis of the associations between OPE biomarkers and sex steroid hormones among children (6-11 years) and adolescents (12-19 years) in the U.S. National Health and Nutrition Examination Survey, 2013-2014.
Participants aged 6-19 years who had available data on urinary OPE metabolites, serum sex hormones [total testosterone (TT), estradiol (E2)] and sex hormone binding globulin (SHBG) were included (n = 544). Free androgen index (FAI) calculated as TT divided by SHBG and a ratio of TT to E2 (TT/E2) were generated. Five urinary OPE metabolites were examined. A constructed puberty status was defined as either high steroid hormone levels (TT ≥ 50 ng/dL in males and E2 ≥ 20 pg/ml in females) or onset of menarche. Multiple linear regression and weighted quantile sum (WQS) regression analyses stratified by sex-age and sex-puberty-status groups were conducted to examine the associations of OPE metabolites and its mixture with sex hormone levels.
After adjusting for covariates, dibutyl phosphate (DBUP) and dibutyl phosphate (DPHP) were significantly inversely associated with TT (or FAI) and E2; DBUP was negatively associated with SHBG; and DPHP was positively associated with SHBG and TT/E2 in female adolescents. In male adolescents, we observed monotonic negative associations of bis(1,3-dichloro-2-propyl) phosphate (BDCPP), DBUP or DPHP with TT (or FAI) and E2, and positive associations of BDCPP and DPHP with SHBG. Among adolescents, the OPEs index was negatively associated with TT [WQS beta = -0.29 (95% confidence interval: -0.51, -0.07) in males and -0.15 (-0.28, -0.01) in females ], FAI [-0.46 (-0.71, -0.2) in males and -0.23 (-0.41, -0.05) in females] and E2 [-0.25 (-0.41, -0.1) in males and -0.33 (-0.59, -0.08) in females], with stronger associations with TT and FAI in males and a slightly stronger association with E2 in females. In addition, the OPEs index presented a comparable positive association with SHBG in both sexes of adolescents. In contrast, significant associations of individual OPE metabolites or OPEs index with sex hormones were sparse in children. Results by sex-puberty status in single pollutant and WQS regression analyses presented a similar pattern, where most of the significant associations were limited to the pubertal individuals. Of note, stronger inverse associations of the OPEs index with TT and FAI remained in pubertal boys. But the association between the OPEs index and E2 was non-significant in pubertal girls, and only in pubertal boys did the OPEs index show a significant and stronger inverse association with E2.
Exposure to OPEs, either individually or as a mixture, was associated with decreased levels of certain sex steroid hormones (TT, FAI, and E2) and increased levels of SHBG in adolescents or pubertal individuals, with the associations presenting somewhat sex-dependent pattern. However, there is little evidence of the significant associations in children or prepubescent ones. Given the cross-sectional nature of the analysis, our findings need further confirmation.
Luo K
,Liu J
,Wang Y
,Aimuzi R
,Luo F
,Ao J
,Zhang J
... -
《-》
-
Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models.
The evaluation of the chemical impact on human health is usually constrained to the analysis of the health effects of exposure to a single chemical or a group of similar chemicals at one time. The effects of chemical mixtures are seldom analyzed. In this study, we applied three statistical models to assess the association between the exposure to a mixture of seven xenobiotics (three phthalate metabolites, two phenols, and two pesticides) and obesity.
Urinary levels of environmental phenols, pesticides, and phthalate metabolites were measured in adults who participated in the U.S.-based National Health and Nutrition Examination Survey (NHANES) from 2013 to 2014. Body examination was conducted to determine obesity. We fitted multivariable models, using generalized linear (here both logistic and linear) regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models to estimate the association between chemical exposures and obesity.
Of 1269 individuals included in our final analysis, 38.5% had general obesity and 58.0% had abdominal obesity. In the logistic regression model established for each single chemical, bisphenol S (BPS), mono (carboxyoctyl) phthalate (MCOP), and mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) were associated with both general and abdominal obesity (fourth vs. first quartile). In linear regression, MCOP was associated with BMI and waist circumference. In WQS regression analysis, the WQS index was significantly associated with both general obesity (OR = 1.63, 95% CI: 1.21-2.20) and abdominal obesity (OR = 1.66, 95% CI: 1.18-2.34). MCOP, bisphenol A (BPA), bisphenol S (BPS), and mono ethyl phthalate (MEP) were the most heavily weighing chemicals. In BKMR analysis, the overall effect of mixture was significantly associated with general obesity when all the chemicals were at their 60th percentile or above it, compared to all of them at their 50th percentile. MCOP, BPA, and BPS showed positive trends. By contrast, MECPP showed a flat and modest inverse trend.
When comparing results from these three models, MCOP, BPA, and BPS were identified as the most important factors associated with obesity. We recommend estimating the joint effects of chemical mixtures by applying diverse statistical methods and interpreting their results together, considering their advantages and disadvantages.
Zhang Y
,Dong T
,Hu W
,Wang X
,Xu B
,Lin Z
,Hofer T
,Stefanoff P
,Chen Y
,Wang X
,Xia Y
... -
《-》
-
Exposure to phthalates, phenols, and parabens mixture and alterations in sex steroid hormones among adolescents.
Exposure to phthalates (PAEs), phenols, and parabens has been linked with sex hormone imbalance; however, previous studies were predominantly limited to adults and failed to examine the combined effects of these chemicals mixture among adolescents. Thus, we used the data from the National Health and Nutrition Examination Survey (2013-2016) to explore the associations of urinary PAEs, phenols, and parabens biomarkers with sex hormones among participants aged 12-19 years old (n = 613). Latent class analysis (LCA) and quantile-based g-computation (QGC) were applied to assess the associations of the latent exposure profiles and chemicals mixture with sex hormone indicators, including steroid hormones and sex hormone binding globulin (SHBG), in adolescents and by sex. Using LCA, four latent classes were identified among all participants. Compared with the class characterized by "Low exposure", the class represented by "High PAEs" [mono (2-ethyl-5-carboxypentyl) phthalate (MECPP), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and monobenzyl phthalate (MBZP)] had lower level of estradiol (E2) [β = -0.249, 95% confidence interval (CI): -0.419, -0.08], free androgen index (FAI) (β = -0.258, 95%CI: -0.512, -0.005) and free testosterone (FT) (β = -0.248, 95%CI: -0.496, -0.001) among male adolescents. These results were echoed by the results in QGC analyses, where PAEs mixture was negatively associated with E2 (β = -0.137, 95% CI: -0.263, -0.011), FAI (β = -0.198, 95%CI: -0.387, -0.008) and FT (β = -0.189, 95%CI: -0.375, -0.002) among male adolescents. By contrast, the associations of the identified latent classes or chemicals mixture with sex hormone indicators were generally nonsignificant among female counterparts, except for a positive association between PAEs mixture and SHBG (β = 0.121, 95%CI: 0.012, 0.23). Our study demonstrated that exposure to PAEs, particularly MECPP, MEHHP, and MBZP, would be a threat to the sex hormone homeostasis of male adolescents.
Aimuzi R
,Wang Y
,Luo K
,Jiang Y
... -
《-》
-
Independent and combined associations of urinary arsenic exposure and serum sex steroid hormones among 6-19-year old children and adolescents in NHANES 2013-2016.
Arsenic exposure may disrupt sex steroid hormones, causing endocrine disruption. However, human evidence is limited and inconsistent, especially for children and adolescents. To evaluate the independent and combined associations between arsenic exposure and serum sex steroid hormones in children and adolescents, we conducted a cross-sectional analysis of data from 1063 participants aged 6 to 19 years from the 2013-2016 National Health and Nutrition Examination Survey (NHANES). Three urine arsenic metabolites were examined, as well as three serum sex steroid hormones, estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG). The ratio of TT to E2 (TT/E2) and the free androgen index (FAI) generated by TT/SHBG were also assessed. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to evaluate the associations of individual or arsenic metabolite combinations with sex steroid hormones by gender and age stratification. Positive associations were found between total arsenic and arsenic metabolites with TT, E2, and FAI. In contrast, negative associations were found between arsenic metabolites and SHBG. Furthermore, there was an interaction after gender-age stratification between DMA and SHBG in female adolescents. Notably, based on the WQS and BKMR model results, the combined association of arsenic and its metabolites was positively associated with TT, E2, and FAI and negatively associated with SHBG. Moreover, DMA and MMA dominated the highest weights among the arsenic metabolites. Overall, our results indicate that exposure to arsenic, either alone or in mixtures, may alter sex steroid hormone levels in children and adolescents.
Zhang Y
,Xing H
,Hu Z
,Xu W
,Tang Y
,Zhang J
,Niu Q
... -
《-》