Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models.

来自 PUBMED

作者:

Zhang YDong THu WWang XXu BLin ZHofer TStefanoff PChen YWang XXia Y

展开

摘要:

The evaluation of the chemical impact on human health is usually constrained to the analysis of the health effects of exposure to a single chemical or a group of similar chemicals at one time. The effects of chemical mixtures are seldom analyzed. In this study, we applied three statistical models to assess the association between the exposure to a mixture of seven xenobiotics (three phthalate metabolites, two phenols, and two pesticides) and obesity. Urinary levels of environmental phenols, pesticides, and phthalate metabolites were measured in adults who participated in the U.S.-based National Health and Nutrition Examination Survey (NHANES) from 2013 to 2014. Body examination was conducted to determine obesity. We fitted multivariable models, using generalized linear (here both logistic and linear) regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models to estimate the association between chemical exposures and obesity. Of 1269 individuals included in our final analysis, 38.5% had general obesity and 58.0% had abdominal obesity. In the logistic regression model established for each single chemical, bisphenol S (BPS), mono (carboxyoctyl) phthalate (MCOP), and mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) were associated with both general and abdominal obesity (fourth vs. first quartile). In linear regression, MCOP was associated with BMI and waist circumference. In WQS regression analysis, the WQS index was significantly associated with both general obesity (OR = 1.63, 95% CI: 1.21-2.20) and abdominal obesity (OR = 1.66, 95% CI: 1.18-2.34). MCOP, bisphenol A (BPA), bisphenol S (BPS), and mono ethyl phthalate (MEP) were the most heavily weighing chemicals. In BKMR analysis, the overall effect of mixture was significantly associated with general obesity when all the chemicals were at their 60th percentile or above it, compared to all of them at their 50th percentile. MCOP, BPA, and BPS showed positive trends. By contrast, MECPP showed a flat and modest inverse trend. When comparing results from these three models, MCOP, BPA, and BPS were identified as the most important factors associated with obesity. We recommend estimating the joint effects of chemical mixtures by applying diverse statistical methods and interpreting their results together, considering their advantages and disadvantages.

收起

展开

DOI:

10.1016/j.envint.2018.11.076

被引量:

102

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(494)

参考文献(0)

引证文献(102)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读