Impact of the combination of virtual reality and noninvasive brain stimulation on the upper limb motor function of stroke patients: a systematic review and meta-analysis.
Stroke frequently results in upper limb motor dysfunction, with traditional therapies often failing to yield sufficient improvements. Emerging technologies such as virtual reality (VR) and noninvasive brain stimulation (NIBS) present promising new rehabilitation possibilities.
This study systematically reviews and meta-analyses the effectiveness of VR and NIBS in improving upper limb motor function in stroke patients.
Registered with PROSPERO (CRD42023494220) and adhering to the PRISMA guidelines, this study conducted a thorough search of databases including PubMed, MEDLINE, PEDro, REHABDATA, EMBASE, Web of Science, Cochrane, CNKI, Wanfang, and VIP from 2000 to December 1, 2023, to identify relevant studies. The inclusion criterion was stroke patients receiving combined VR and NIBS treatment, while exclusion criteria were studies with incomplete articles and data. The risk of bias was assessed using the Cochrane Collaboration tool. Statistical analysis was performed using Stata SE 15.0, employing either a fixed-effects model or a random-effects model based on the level of heterogeneity.
A total of 11 studies involving 493 participants were included, showing a significant improvement in Fugl-Meyer Assessment Upper Extremity (FMA-UE) scores in the combined treatment group compared to the control group (SMD = 0.85, 95% CI [0.40, 1.31], p = 0.017). The Modified Ashworth Scale (MAS) scores significantly decreased (SMD = - 0.51, 95% CI [- 0.83, - 0.20], p = 0.032), the Modified Barthel Index (MBI) scores significantly increased (SMD = 0.97, 95% CI [0.76, 1.17], p = 0.004), and the Wolf Motor Function Test (WMFT) scores also significantly increased (SMD = 0.36, 95% CI [0.08, 0.64], p = 0.021). Subgroup analysis indicated that the duration of treatment influenced the outcomes in daily living activities.
The combination of VR and NIBS demonstrates significant improvements in upper limb motor function in stroke patients. The duration of treatment plays a critical role in influencing the outcomes, particularly in activities of daily living. This systematic review has limitations, including language bias, unclear randomization descriptions, potential study omissions, and insufficient follow-up periods. Future studies should focus on exploring long-term effects and optimizing treatment duration to maximize the benefits of combined VR and NIBS therapy.
Zhang N
,Wang H
,Wang H
,Qie S
... -
《Journal of NeuroEngineering and Rehabilitation》
Non-invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-analysis.
To compare the efficacy of non-invasive brain stimulation (NiBS) such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), theta-burst stimulation (TBS), and transcutaneous vagus nerve stimulation (taVNS) in upper limb stroke rehabilitation.
PubMed, Web of Science, and Cochrane databases were searched from January 2010 to June 2022.
Randomized controlled trials (RCTs) assessing the effects of "tDCS", "rTMS", "TBS", or "taVNS" on upper limb motor function and performance in activities of daily livings (ADLs) after stroke.
Data were extracted by 2 independent reviewers. Risk of bias was evaluated with the Cochrane Risk of Bias tool.
87 RCTs with 3750 participants were included. Pairwise meta-analysis showed that all NiBS except continuous TBS (cTBS) and cathodal tDCS were significantly more efficacious than sham stimulation for motor function (standardized mean difference [SMD] range 0.42-1.20), whereas taVNS, anodal tDCS, and both low and high frequency rTMS were significantly more efficacious than sham stimulation for ADLs (SMD range 0.54-0.99). NMA showed that taVNS was more effective than cTBS (SMD:1.00; 95% CI (0.02-2.02)), cathodal tDCS (SMD:1.07; 95% CI (0.21-1.92)), and Physical rehabilitation alone (SMD:1.46; 95% CI (0.59-2.33)) for improving motor function. P-score found that taVNS is best ranked treatment in improving motor function (SMD: 1.20; 95% CI (0.46-1.95)) and ADLs (SMD:1.20; 95% CI (0.45-1.94)) after stroke. After taVNS, excitatory stimulation protocols (intermittent TBS, anodal tDCS, and HF-rTMS) are most effective in improving motor function and ADLs after acute/sub-acute (SMD range 0.53-1.63) and chronic stroke (SMD range 0.39-1.16).
Evidence suggests that excitatory stimulation protocols are the most promising intervention in improving upper limb motor function and performance in ADLs. taVNS appeared to be a promising intervention for stroke patients, but further large RCTs are required to confirm its relative superiority.
Ahmed I
,Mustafaoglu R
,Rossi S
,Cavdar FA
,Agyenkwa SK
,Pang MYC
,Straudi S
... -
《-》
Effects of combining two techniques of non-invasive brain stimulation in subacute stroke patients: a pilot study.
Strokes have recently become a leading cause of disability among Thai people. Non-invasive brain stimulation (NIBS) seems to give promising results in stroke recovery when combined with standard rehabilitation programs.
To evaluate the combined effect of low-frequency repetitive transcranial magnetic stimulation (rTMS) and cathodal transcranial direct current stimulation (tDCS) over the non-lesional primary motor cortex on upper limb motor recovery in patients with subacute stroke. No reports of a combination of these two techniques of NIBS were found in the relevant literature.
This pilot study was a double-blinded, randomized controlled trial of ten patients with subacute stroke admitted to the Rehabilitation Medicine Inpatient Unit, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University. They were randomized into two groups: five in an active and five in a sham intervention group. Fugl-Meyer's upper extremity motor score (FMA-UE) and Wolf Motor Function Test (WMFT) were used to assess motor recovery at baseline, immediately, and 1 week after stimulation.
A two-way repeated ANOVA (mixed design) showed a significant improvement in FMA-UE scores in the active intervention group both immediately and 1 week after stimulation in comparison to the baseline, [time, F (2, 16) = 27.44, p < 0.001, time x group interaction, F (2, 16) = 13.29, p < 0.001]. Despite no statistical significance, a trend toward higher WMFT scores was shown in the active intervention group.
A single session of low-frequency rTMS and cathodal tDCS over the non-lesional primary motor cortex may enhance upper limb motor recovery in patients with subacute stroke.
Pipatsrisawat S
,Klaphajone J
,Kitisak K
,Sungkarat S
,Wivatvongvana P
... -
《BMC Neurology》