A hybrid optimization strategy for deliverable intensity-modulated radiotherapy plan generation using deep learning-based dose prediction.

来自 PUBMED

作者:

Sun ZXia XFan JZhao JZhang KWang JHu W

展开

摘要:

To propose a clinically feasible automatic planning solution for external beam intensity-modulated radiotherapy, including dose prediction via a deep learning and voxel-based optimization strategy. The dose distribution of patients was predicted using a U-Net-based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel-based optimization strategy, "Voxel," was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose-volume objectives were attached to the total objective function to realize individualized planning intended as the "hybrid" optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose-volume histograms (DVHs). Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT-linac 506c (United Imaging Healthcare, Shanghai, China). Deliverable plans can be generated by incorporating a voxel-based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.

收起

展开

DOI:

10.1002/mp.15462

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(299)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读