Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique.

来自 PUBMED

作者:

Fan JWang JChen ZHu CZhang ZHu W

展开

摘要:

To develop an automated treatment planning strategy for external beam intensity-modulated radiation therapy (IMRT), including a deep learning-based three-dimensional (3D) dose prediction and a dose distribution-based plan generation algorithm. A residual neural network-based deep learning model is trained to predict a dose distribution based on patient-specific geometry and prescription dose. A total of 270 head-and-neck cancer cases were enrolled in this study, including 195 cases in the training dataset, 25 cases in the validation dataset, and 50 cases in the testing dataset. All patients were treated with IMRT with a variety of different prescription patterns. The model input consists of CT images and contours delineating the organs at risk (OARs) and planning target volumes (PTVs). The algorithm output is trained to predict the dose distribution on the CT image slices. The obtained prediction model is used to predict dose distributions for new patients. Then, an optimization objective function based on these predicted dose distributions is created for automatic plan generation. Our results demonstrate that the deep learning method can predict clinically acceptable dose distributions. There is no statistically significant difference between prediction and real clinical plan for all clinically relevant dose-volume histogram (DVH) indices, except brainstem, right and left lens. However, the predicted plans were still clinically acceptable. The results of plan generation show no statistically significant differences between the automatic generated plan and the predicted plan except PTV70.4 , but the difference is only 0.5% which is still clinically acceptable. This study developed a new automated radiotherapy treatment planning system based on 3D dose prediction and 3D dose distribution-based optimization. It is a promising approach for realizing automated treatment planning in the future.

收起

展开

DOI:

10.1002/mp.13271

被引量:

126

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(428)

参考文献(0)

引证文献(126)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读