-
Real-World Experience of Cryopreserved Allogeneic Hematopoietic Grafts during the COVID-19 Pandemic: A Single-Center Report.
In response to the widespread COVID-19 pandemic, cryopreservation of allogeneic donor apheresis products was implemented to mitigate the challenges of donor availability and product transport. Although logistically beneficial, the impact of cryopreservation on clinical outcomes and graft composition remains unclear. In this study, we compared outcomes and graft composition with cryopreserved versus fresh allografts in the setting of allogeneic hematopoietic cell transplantation (allo-HCT). We retrospectively analyzed the clinical outcomes of 30 consecutive patients who received cryopreserved allografts between March and August 2020 and 60 consecutive patients who received fresh allografts before the COVID-19 pandemic. Primary endpoints were hematopoietic engraftment and graft failure (GF), and secondary outcomes were overall survival (OS), relapse-free survival (RFS) and nonrelapse mortality (NRM). In addition, extended immunophenotype analysis was performed on cryopreserved and prospectively collected fresh apheresis samples. Compared with recipients of fresh allografts, both neutrophil and platelet recovery were delayed in recipients of cryopreserved reduced-intensity conditioning (RIC) allo-HCT, with a median time to engraftment of 24 days versus 18 days (P = .01) for neutrophils and 27 days versus 18 days (P = .069) for platelets. We observed primary GF in 4 of 30 patients in the cryopreserved cohort (13.3%) versus only 1 of 60 patients (1.7 %) in the fresh cohort (P = .03). Cryopreserved RIC allo-HCT was associated with significantly lower median total, myeloid, and T cell donor chimerism at 1 month. OS and RFS were inferior for cryopreserved graft recipients (hazard ratio [HR], 2.16; 95% confidence interval [CI], 1.00 to 4.67) and HR, 1.90; 95% CI, 0.95 to 3.79, respectively. Using an extended immunophenotype analysis, we compared 14 samples from the cryopreserved cohort to 6 prospectively collected fresh apheresis donor samples. These analyses showed both a decrease in total cell viability and a significantly reduced absolute number of natural killer cells (CD3-CD56+) in the cryopreserved apheresis samples. In this single-institution study, we found delayed engraftment and a trend toward clinical inferiority of cryopreserved allografts compared with fresh allografts. Further evaluation of the use of cryopreserved allografts and their impact on clinical and laboratory outcomes is warranted.
Bankova AK
,Caveney J
,Yao B
,Ramos TL
,Bögeholz J
,Heydari K
,Diaz N
,Jackson ML
,Lowsky R
,Brown JW
,Johnston L
,Rezvani AR
,Frank MJ
,Muffly L
,Weng WK
,Sidana S
,Negrin RS
,Miklos DB
,Shiraz P
,Meyer EH
,Shizuru JA
,Arai S
... -
《-》
-
Universal Engraftment after Allogeneic Hematopoietic Cell Transplantation Using Cryopreserved CD34-Selected Grafts.
As a result of the COVID-19 pandemic, most centers performing allogeneic hematopoietic cell transplantation (allo-HCT) have switched to the use of cryopreserved grafts. Previous investigators have suggested that cryopreserved allografts may heighten risk of nonengraftment. To date, no study has investigated the effect of cryopreservation of CD34-selected hematopoietic progenitor cells (CD34+ HPCs) used as the sole graft source. In this study, we sought to evaluate outcomes after unrelated donor or matched sibling allo-HCT with cryopreserved CD34+ HPCs. This was a single-center analysis of adult patients with hematologic malignancies who underwent allo-HCT with cryopreserved CD34-selected allo-HCT grafts between January 2010 and June 2017. All patients received ablative conditioning and antirejection prophylaxis with rabbit antithymocyte globulin. G-CSF-mobilized leukapheresis products underwent CD34 selection using the CliniMACS Reagent System. Cells were then cryopreserved in DMSO (final concentration 7.5%) to -90 °C using a controlled-rate freezing system before being transferred to vapor-phase liquid nitrogen storage. In internal validation, this method has shown 92% mean CD34+ cell viability and 99.7% mean CD34+ cell recovery. Engraftment was defined as the first of 3 consecutive days of an absolute neutrophil count of ≥0.5. Platelet recovery was recorded as the first of 7 consecutive days with a platelet count ≥20 K/μL without transfusion. Kaplan-Meier methodology was used to estimate overall survival (OS) and relapse-free survival (RFS), and cumulative incidence functions were used to estimate rates of relapse, nonrelapse mortality (NRM), and acute graft-versus-host disease (GVHD). A total of 64 patients received a cryopreserved CD34-selected graft. The median CD34+ cell count before cryopreservation was 6.6 × 106/kg (range, 1.4 to 16.1 × 106/kg), and the median CD3+ cell count was 2.0 × 103/kg (range, 0 to 21.1 × 106/kg). All patients were engrafted, at a median of 11 days post-HCT (range, 8 to 14 days). One patient had poor graft function in the setting of cytomegalovirus viremia, necessitating a CD34-selected boost on day +57. The median time to platelet recovery was 16 days (range, 13 to 99 days). The estimated 2-year OS was 70% (95% confidence interval [CI], 58% to 83%) with cryopreserved grafts versus 62% (95% CI, 57% to 67%) with fresh grafts (hazard ratio [HR], 0.86; 95% CI, 0.54 to 1.35; P = .5). The estimated 2-year RFS in the 2 groups was 59% (95% CI, 48% to 74%) versus 56% (95% CI, 51% to 61%; HR, 1.01; 95% CI, 0.68 to 1.51; P > .9). The cumulative incidence of relapse at 2 years was 29% (95% CI, 17% to 41%) versus 23% (95% CI, 19% to 27%; P = .16), and the cumulative incidence of NRM at 2 years was 17% (95% CI, 9% to 28%) versus 23% (95% CI, 19% to 28%; P = .24). The cumulative incidence of grade II-IV acute GVHD by day +100 was 16% with cryopreserved grafts (95% CI, 8% to 26%) and 16% (95% CI, 13% to 20%; P = .97) with fresh grafts. Moderate to severe chronic GVHD by day +365 occurred in only 1 recipient of a cryopreserved graft (2%). Our data show that in patients with hematologic malignancies who received cryopreserved allogeneic CD34+ HPCs, engraftment, GVHD, and survival outcomes were consistent with those seen in recipients of fresh allogeneic CD34+ HPC grafts at our center. Our laboratory validation and clinical experience demonstrate the safety of our cryopreservation procedure for CD34-selected allografts.
Jacob RP
,Flynn J
,Devlin SM
,Maloy M
,Giralt SA
,Maslak P
,O'Reilly RJ
,Tonon JA
,Perales MA
,Avecilla ST
,Cho C
... -
《-》
-
Graft Cryopreservation Does Not Impact Overall Survival after Allogeneic Hematopoietic Cell Transplantation Using Post-Transplantation Cyclophosphamide for Graft-versus-Host Disease Prophylaxis.
The COVID-19 pandemic has created significant barriers to timely donor evaluation, cell collection, and graft transport for allogeneic hematopoietic stem cell transplantation (allo-HCT). To ensure availability of donor cells on the scheduled date of infusion, many sites now collect cryopreserved grafts before the start of pretransplantation conditioning. Post-transplantation cyclophosphamide (ptCY) is an increasingly used approach for graft-versus-host disease (GVHD) prophylaxis, but the impact of graft cryopreservation on the outcomes of allo-HCT using ptCY is not known. Using the Center for International Blood and Marrow Transplant Research (CIBMTR) database, we compared the outcomes of HCT using cryopreserved versus fresh grafts in patients undergoing HCT for hematologic malignancy with ptCY. We analyzed 274 patients with hematologic malignancy undergoing allo-HCT between 2013 and 2018 with cryopreserved grafts and ptCY. Eighteen patients received bone marrow grafts and 256 received peripheral blood stem cell grafts. These patients were matched for age, graft type, disease risk index (DRI), and propensity score with 1080 patients who underwent allo-HCT with fresh grafts. The propensity score, which is an assessment of the likelihood of receiving a fresh graft versus a cryopreserved graft, was calculated using logistic regression to account for the following: disease histology, Karnofsky Performance Score (KPS), HCT Comorbidity Index, conditioning regimen intensity, donor type, and recipient race. The primary endpoint was overall survival (OS). Secondary endpoints included acute and chronic graft-versus-host disease (GVHD), non-relapse mortality (NRM), relapse/progression and disease-free survival (DFS). Because of multiple comparisons, only P values <.01 were considered statistically significant. The 2 cohorts (cryopreserved and fresh) were similar in terms of patient age, KPS, diagnosis, DRI, HCT-CI, donor/graft source, and conditioning intensity. One-year probabilities of OS were 71.1% (95% confidence interval [CI], 68.3% to 73.8%) with fresh grafts and 70.3% (95% CI, 64.6% to 75.7%) with cryopreserved grafts (P = .81). Corresponding probabilities of OS at 2 years were 60.6% (95% CI, 57.3% to 63.8%) and 58.7% (95% CI, 51.9% to 65.4%) (P = .62). In matched-pair regression analysis, graft cryopreservation was not associated with a significantly higher risk of mortality (hazard ratio [HR] for cryopreserved versus fresh, 1.05; 95% CI, .86 to 1.29; P = .60). Similarly, rates of neutrophil recovery (HR, .91; 95% CI, .80 to 1.02; P = .12), platelet recovery (HR, .88; 95% CI, .78 to 1.00; P = .05), grade III-IV acute GVHD (HR, .78; 95% CI, .50 to 1.22; P = .27), NRM (HR, 1.16; 95% CI, .86 to 1.55; P = .32) and relapse/progression (HR, 1.21; 95% CI, .97 to 1.50; P = .09) were similar with cryopreserved grafts versus fresh grafts. There were somewhat lower rates of chronic GVHD (HR, 78; 95% CI, .61 to .99; P = .04) and DFS (HR for treatment failure, 1.19; 95% CI, 1.01 to 1.29; P = .04) with graft cryopreservation that were of marginal statistical significance after adjusting for multiple comparisons. Overall, our data indicate that graft cryopreservation does not significantly delay hematopoietic recovery, increase the risk of acute GVHD or NRM, or decrease OS after allo-HCT using ptCY.
Hamadani M
,Zhang MJ
,Tang XY
,Fei M
,Brunstein C
,Chhabra S
,D'Souza A
,Milano F
,Phelan R
,Saber W
,Shaw BE
,Weisdorf D
,Devine SM
,Horowitz MM
... -
《-》
-
The Effect of Donor Graft Cryopreservation on Allogeneic Hematopoietic Cell Transplantation Outcomes: A Center for International Blood and Marrow Transplant Research Analysis. Implications during the COVID-19 Pandemic.
The COVID-19 pandemic has resulted in the increased use of cryopreserved grafts for allogeneic hematopoietic cell transplantation (HCT). However, information about the effect of cryopreservation on outcomes for patients receiving allogeneic donor grafts is limited. We evaluated outcomes of HCT recipients who received either fresh or cryopreserved allogeneic bone marrow (BM) or peripheral blood stem cell (PBSC) grafts reported to the Center for International Blood and Marrow Transplant Research. A total of 7397 patients were included in the analysis. Recipients of cryopreserved graft were divided into 3 cohorts based on graft source: HLA-matched related PBSC donors (n = 1051), matched unrelated PBSC donors (n = 678), and matched related or unrelated BM donors (n = 154). These patients were propensity score matched with 5514 patients who received fresh allografts. The primary endpoint was engraftment. Multivariate analyses showed no significant increased risk of delayed engraftment, relapse, nonrelapse mortality (NRM), or survival with cryopreservation of BM grafts. In contrast, cryopreservation of related donor PBSC grafts was associated with decreased platelet recovery (hazard ratio [HR], 0.73; 95% confidence interval [CI], 0.68 to 0.78; P < .001) and an increased risk of grade II-IV (HR, 1.27; 95% CI, 1.09 to 1.48; P = .002) and grade III-IV (HR, 1.48; 95% CI, 1.19 to 1.84; P < .001) acute graft-versus-host disease. Cryopreservation of unrelated PBSC grafts was associated with delayed engraftment of neutrophils (HR, 0.77; 95% CI, 0.71 to 0.84; P < .001) and platelets (HR, 0.61; 95% CI, 0.56 to 0.66; P < .001) as well as an increased risk of NRM (HR, 1.4; 95% CI, 1.18 to 1.66; P < .001) and relapse (HR, 1.32; 95% CI, 1.11 to 1.58; P = .002) and decreased progression-free survival (HR, 1.36; 95% CI, 1.20 to 1.55; P < .001) and overall survival (OS) (HR, 1.38; 95% CI, 1.22 to 1.58; P < .001). Reasons for cryopreservation were not routinely collected; however, in a subset of unrelated donor HCT recipients, the reason was typically a change in patient condition. Products cryopreserved for patient reasons were significantly associated with inferior OS in multivariate analysis (HR, 0.65; 95% CI, 0.44 to 0.96; P = .029). We conclude that cryopreservation is associated with slower engraftment of PBSC grafts, which may be associated with inferior transplantation outcomes in some patient populations. However, the small numbers in the cryopreserved BM cohort and the lack of information on the reason for cryopreservation in all patients suggests that these data should be interpreted with caution, particularly in the context of the risks associated with unexpected loss of a graft during the pandemic. Future analyses addressing outcomes when cryopreservation is universally applied are urgently required.
Hsu JW
,Farhadfar N
,Murthy H
,Logan BR
,Bo-Subait S
,Frey N
,Goldstein SC
,Horowitz MM
,Lazarus H
,Schwanke JD
,Shah NN
,Spellman SR
,Switzer GE
,Devine SM
,Shaw BE
,Wingard JR
... -
《-》
-
Cryopreservation of Allogeneic Hematopoietic Cell Products During COVID-19 Pandemic: Graft Characterization and Engraftment Outcomes.
The COVID-19 pandemic triggered the deployment of unfamiliar measures to safeguard successful allogeneic hematopoietic cell transplantation (allo-HCT). Among these measures, cryopreservation offered logistical benefits that could outlast the pandemic, including graft availability and timely clinical service. The purpose of this study was to evaluate graft quality and hematopoietic reconstitution in patients transplanted with cryopreserved allogeneic stem cell products during the COVID-19 pandemic.
We evaluated 44 patients who underwent allo-HCT using cryopreserved grafts consisting of hematopoietic progenitor cells (HPC) apheresis (A) and bone marrow (BM) products at Mount Sinai Hospital. Comparative analyses of 37 grafts infused fresh during the one-year period preceding the pandemic were performed. Assessment of cellular therapy products included total nucleated cell and CD34+ cell enumeration, viability, and post-thaw recovery. The primary clinical endpoint was the evaluation of engraftment (absolute neutrophil count [ANC] and platelet count) and donor chimerism (presence of CD33+ and CD3+ donor cells) at day +30 and +100 post-transplant. Adverse events related to cell infusion were also analyzed.
Patient characteristics were comparable between the fresh and cryopreserved groups with 2 exceptions in the HPC-A cohort: the number of patients in the cryopreserved group that received haploidentical grafts was 6 times that in the fresh group, and the number of patients in the fresh group with a Karnofsky performance score >90 was double that in the cryopreserved group. The quality of HPC-A and HPC-BM products was not affected by cryopreservation, and all grafts met the release criteria for infusion. The pandemic did not affect the time between collection and cryopreservation (median, 24 hours) and time in storage (median, 15 days). Median time to ANC recovery was significantly delayed in recipients of cryopreserved HPC-A (15 vs 11 days, P = .0121), and there was a trend toward delayed platelet engraftment (24 vs 19 days, P = .0712). The delay in ANC and platelet recovery was not observed when only matched graft recipients were compared. Cryopreservation did not affect the ability of HPC-BM grafts to engraft and reconstitute hematopoiesis, and there was no difference in the rates of ANC and platelet recovery. Achievement of donor CD3/CD33 chimerism was not affected by cryopreservation of either HPC-A or HPC-BM products. Graft failure was observed in only 1 case, a recipient of cryopreserved HPC-BM. Three recipients of cryopreserved HPC-A grafts died before ANC engraftment from infectious complications. Remarkably, 22% of our studied population had myelofibrosis, and almost half received cryopreserved HPC-A grafts with no graft failure observed. Finally, patients receiving cryopreserved grafts were at a higher risk of infusion-related adverse events than those receiving fresh grafts.
Cryopreservation of allogeneic grafts results in adequate product quality with minimal impact on short-term clinical outcomes, except for an increased risk of infusion-related adverse events. Cryopreservation is a safe option in terms of graft quality and hematopoietic reconstitution with logistical benefits, but additional data are needed to determine long-term outcomes and assess whether this is a suitable strategy for at-risk patients.
Keyzner A
,Azzi J
,Jakubowski R
,Sinitsyn Y
,Tindle S
,Shpontak S
,Kwon D
,Isola L
,Iancu-Rubin C
... -
《-》