-
The Effect of Donor Graft Cryopreservation on Allogeneic Hematopoietic Cell Transplantation Outcomes: A Center for International Blood and Marrow Transplant Research Analysis. Implications during the COVID-19 Pandemic.
The COVID-19 pandemic has resulted in the increased use of cryopreserved grafts for allogeneic hematopoietic cell transplantation (HCT). However, information about the effect of cryopreservation on outcomes for patients receiving allogeneic donor grafts is limited. We evaluated outcomes of HCT recipients who received either fresh or cryopreserved allogeneic bone marrow (BM) or peripheral blood stem cell (PBSC) grafts reported to the Center for International Blood and Marrow Transplant Research. A total of 7397 patients were included in the analysis. Recipients of cryopreserved graft were divided into 3 cohorts based on graft source: HLA-matched related PBSC donors (n = 1051), matched unrelated PBSC donors (n = 678), and matched related or unrelated BM donors (n = 154). These patients were propensity score matched with 5514 patients who received fresh allografts. The primary endpoint was engraftment. Multivariate analyses showed no significant increased risk of delayed engraftment, relapse, nonrelapse mortality (NRM), or survival with cryopreservation of BM grafts. In contrast, cryopreservation of related donor PBSC grafts was associated with decreased platelet recovery (hazard ratio [HR], 0.73; 95% confidence interval [CI], 0.68 to 0.78; P < .001) and an increased risk of grade II-IV (HR, 1.27; 95% CI, 1.09 to 1.48; P = .002) and grade III-IV (HR, 1.48; 95% CI, 1.19 to 1.84; P < .001) acute graft-versus-host disease. Cryopreservation of unrelated PBSC grafts was associated with delayed engraftment of neutrophils (HR, 0.77; 95% CI, 0.71 to 0.84; P < .001) and platelets (HR, 0.61; 95% CI, 0.56 to 0.66; P < .001) as well as an increased risk of NRM (HR, 1.4; 95% CI, 1.18 to 1.66; P < .001) and relapse (HR, 1.32; 95% CI, 1.11 to 1.58; P = .002) and decreased progression-free survival (HR, 1.36; 95% CI, 1.20 to 1.55; P < .001) and overall survival (OS) (HR, 1.38; 95% CI, 1.22 to 1.58; P < .001). Reasons for cryopreservation were not routinely collected; however, in a subset of unrelated donor HCT recipients, the reason was typically a change in patient condition. Products cryopreserved for patient reasons were significantly associated with inferior OS in multivariate analysis (HR, 0.65; 95% CI, 0.44 to 0.96; P = .029). We conclude that cryopreservation is associated with slower engraftment of PBSC grafts, which may be associated with inferior transplantation outcomes in some patient populations. However, the small numbers in the cryopreserved BM cohort and the lack of information on the reason for cryopreservation in all patients suggests that these data should be interpreted with caution, particularly in the context of the risks associated with unexpected loss of a graft during the pandemic. Future analyses addressing outcomes when cryopreservation is universally applied are urgently required.
Hsu JW
,Farhadfar N
,Murthy H
,Logan BR
,Bo-Subait S
,Frey N
,Goldstein SC
,Horowitz MM
,Lazarus H
,Schwanke JD
,Shah NN
,Spellman SR
,Switzer GE
,Devine SM
,Shaw BE
,Wingard JR
... -
《-》
-
Graft Cryopreservation Does Not Impact Overall Survival after Allogeneic Hematopoietic Cell Transplantation Using Post-Transplantation Cyclophosphamide for Graft-versus-Host Disease Prophylaxis.
The COVID-19 pandemic has created significant barriers to timely donor evaluation, cell collection, and graft transport for allogeneic hematopoietic stem cell transplantation (allo-HCT). To ensure availability of donor cells on the scheduled date of infusion, many sites now collect cryopreserved grafts before the start of pretransplantation conditioning. Post-transplantation cyclophosphamide (ptCY) is an increasingly used approach for graft-versus-host disease (GVHD) prophylaxis, but the impact of graft cryopreservation on the outcomes of allo-HCT using ptCY is not known. Using the Center for International Blood and Marrow Transplant Research (CIBMTR) database, we compared the outcomes of HCT using cryopreserved versus fresh grafts in patients undergoing HCT for hematologic malignancy with ptCY. We analyzed 274 patients with hematologic malignancy undergoing allo-HCT between 2013 and 2018 with cryopreserved grafts and ptCY. Eighteen patients received bone marrow grafts and 256 received peripheral blood stem cell grafts. These patients were matched for age, graft type, disease risk index (DRI), and propensity score with 1080 patients who underwent allo-HCT with fresh grafts. The propensity score, which is an assessment of the likelihood of receiving a fresh graft versus a cryopreserved graft, was calculated using logistic regression to account for the following: disease histology, Karnofsky Performance Score (KPS), HCT Comorbidity Index, conditioning regimen intensity, donor type, and recipient race. The primary endpoint was overall survival (OS). Secondary endpoints included acute and chronic graft-versus-host disease (GVHD), non-relapse mortality (NRM), relapse/progression and disease-free survival (DFS). Because of multiple comparisons, only P values <.01 were considered statistically significant. The 2 cohorts (cryopreserved and fresh) were similar in terms of patient age, KPS, diagnosis, DRI, HCT-CI, donor/graft source, and conditioning intensity. One-year probabilities of OS were 71.1% (95% confidence interval [CI], 68.3% to 73.8%) with fresh grafts and 70.3% (95% CI, 64.6% to 75.7%) with cryopreserved grafts (P = .81). Corresponding probabilities of OS at 2 years were 60.6% (95% CI, 57.3% to 63.8%) and 58.7% (95% CI, 51.9% to 65.4%) (P = .62). In matched-pair regression analysis, graft cryopreservation was not associated with a significantly higher risk of mortality (hazard ratio [HR] for cryopreserved versus fresh, 1.05; 95% CI, .86 to 1.29; P = .60). Similarly, rates of neutrophil recovery (HR, .91; 95% CI, .80 to 1.02; P = .12), platelet recovery (HR, .88; 95% CI, .78 to 1.00; P = .05), grade III-IV acute GVHD (HR, .78; 95% CI, .50 to 1.22; P = .27), NRM (HR, 1.16; 95% CI, .86 to 1.55; P = .32) and relapse/progression (HR, 1.21; 95% CI, .97 to 1.50; P = .09) were similar with cryopreserved grafts versus fresh grafts. There were somewhat lower rates of chronic GVHD (HR, 78; 95% CI, .61 to .99; P = .04) and DFS (HR for treatment failure, 1.19; 95% CI, 1.01 to 1.29; P = .04) with graft cryopreservation that were of marginal statistical significance after adjusting for multiple comparisons. Overall, our data indicate that graft cryopreservation does not significantly delay hematopoietic recovery, increase the risk of acute GVHD or NRM, or decrease OS after allo-HCT using ptCY.
Hamadani M
,Zhang MJ
,Tang XY
,Fei M
,Brunstein C
,Chhabra S
,D'Souza A
,Milano F
,Phelan R
,Saber W
,Shaw BE
,Weisdorf D
,Devine SM
,Horowitz MM
... -
《-》
-
Universal Engraftment after Allogeneic Hematopoietic Cell Transplantation Using Cryopreserved CD34-Selected Grafts.
As a result of the COVID-19 pandemic, most centers performing allogeneic hematopoietic cell transplantation (allo-HCT) have switched to the use of cryopreserved grafts. Previous investigators have suggested that cryopreserved allografts may heighten risk of nonengraftment. To date, no study has investigated the effect of cryopreservation of CD34-selected hematopoietic progenitor cells (CD34+ HPCs) used as the sole graft source. In this study, we sought to evaluate outcomes after unrelated donor or matched sibling allo-HCT with cryopreserved CD34+ HPCs. This was a single-center analysis of adult patients with hematologic malignancies who underwent allo-HCT with cryopreserved CD34-selected allo-HCT grafts between January 2010 and June 2017. All patients received ablative conditioning and antirejection prophylaxis with rabbit antithymocyte globulin. G-CSF-mobilized leukapheresis products underwent CD34 selection using the CliniMACS Reagent System. Cells were then cryopreserved in DMSO (final concentration 7.5%) to -90 °C using a controlled-rate freezing system before being transferred to vapor-phase liquid nitrogen storage. In internal validation, this method has shown 92% mean CD34+ cell viability and 99.7% mean CD34+ cell recovery. Engraftment was defined as the first of 3 consecutive days of an absolute neutrophil count of ≥0.5. Platelet recovery was recorded as the first of 7 consecutive days with a platelet count ≥20 K/μL without transfusion. Kaplan-Meier methodology was used to estimate overall survival (OS) and relapse-free survival (RFS), and cumulative incidence functions were used to estimate rates of relapse, nonrelapse mortality (NRM), and acute graft-versus-host disease (GVHD). A total of 64 patients received a cryopreserved CD34-selected graft. The median CD34+ cell count before cryopreservation was 6.6 × 106/kg (range, 1.4 to 16.1 × 106/kg), and the median CD3+ cell count was 2.0 × 103/kg (range, 0 to 21.1 × 106/kg). All patients were engrafted, at a median of 11 days post-HCT (range, 8 to 14 days). One patient had poor graft function in the setting of cytomegalovirus viremia, necessitating a CD34-selected boost on day +57. The median time to platelet recovery was 16 days (range, 13 to 99 days). The estimated 2-year OS was 70% (95% confidence interval [CI], 58% to 83%) with cryopreserved grafts versus 62% (95% CI, 57% to 67%) with fresh grafts (hazard ratio [HR], 0.86; 95% CI, 0.54 to 1.35; P = .5). The estimated 2-year RFS in the 2 groups was 59% (95% CI, 48% to 74%) versus 56% (95% CI, 51% to 61%; HR, 1.01; 95% CI, 0.68 to 1.51; P > .9). The cumulative incidence of relapse at 2 years was 29% (95% CI, 17% to 41%) versus 23% (95% CI, 19% to 27%; P = .16), and the cumulative incidence of NRM at 2 years was 17% (95% CI, 9% to 28%) versus 23% (95% CI, 19% to 28%; P = .24). The cumulative incidence of grade II-IV acute GVHD by day +100 was 16% with cryopreserved grafts (95% CI, 8% to 26%) and 16% (95% CI, 13% to 20%; P = .97) with fresh grafts. Moderate to severe chronic GVHD by day +365 occurred in only 1 recipient of a cryopreserved graft (2%). Our data show that in patients with hematologic malignancies who received cryopreserved allogeneic CD34+ HPCs, engraftment, GVHD, and survival outcomes were consistent with those seen in recipients of fresh allogeneic CD34+ HPC grafts at our center. Our laboratory validation and clinical experience demonstrate the safety of our cryopreservation procedure for CD34-selected allografts.
Jacob RP
,Flynn J
,Devlin SM
,Maloy M
,Giralt SA
,Maslak P
,O'Reilly RJ
,Tonon JA
,Perales MA
,Avecilla ST
,Cho C
... -
《-》
-
Cryopreservation of Unrelated Hematopoietic Stem Cells from a Blood and Marrow Donor Bank During the COVID-19 Pandemic: A Nationwide Survey by the Japan Marrow Donor Program.
During the COVID-19 pandemic, donor hematopoietic stem cell grafts are frequently cryopreserved to ensure the availability of graft before starting a conditioning regimen. However, the safety of cryopreservation has been controversial in unrelated hematopoietic stem cell transplantation (HSCT), especially for bone marrow (BM) grafts. In addition, in unrelated HSCT, the effect of the time from harvest to cryopreservation of donor grafts required for the transportation of donor graft has not been fully clarified. In this study, we retrospectively analyzed the first 112 patients with available data who underwent cryopreserved unrelated blood and marrow transplantation through the Japan Marrow Donor Program during the COVID-19 pandemic. There were 112 patients, including 83 who received BM grafts and 29 who received peripheral blood stem cell (PBSC) grafts. The median time from stem cell harvest to cryopreservation was 9.9 hours (range, 2.6 to 44.0 hours), and the median time from cryopreservation to infusion was 231.2 hours. The incidence of neutrophil engraftment at day 28 after HSCT was 91.1%, and among 109 patients (excluding 3 patients with early death), all but 1 patient achieved neutrophil engraftment within 60 days after HSCT. The time to neutrophil engraftment and time to platelet engraftment were shorter in PBSC transplantation compared with BM transplantation (BMT), but the differences were not statistically significant (P = .064 and .18). Multivariate analysis among BM recipients revealed that a higher number of frozen nucleated cells and the absence of HLA mismatch were associated with faster neutrophil engraftment. The time to neutrophil engraftment after unrelated cryopreserved BMT was not different from that after unrelated BMT without cryopreservation. Our findings suggest that unrelated donor BM and PBSC grafts can be safely cryopreserved even after transit from the harvest center to the transplantation center. In the current COVID-19 pandemic, cryopreservation can be considered as an option while balancing the risks and benefits of the procedure.
Kanda Y
,Inoue M
,Uchida N
,Onishi Y
,Kamata R
,Kotaki M
,Kobayashi R
,Tanaka J
,Fukuda T
,Fujii N
,Miyamura K
,Mori SI
,Mori Y
,Morishima Y
,Yabe H
,Kodera Y
... -
《-》
-
Cryopreservation of Growth Factor-Mobilized Peripheral Blood Stem Cells Does Not Compromise Major Outcomes after Allogeneic Hematopoietic Cell Transplantation: A Single-Center Experience.
During the Coronavirus disease 2019 pandemic, cryopreservation of allogeneic donor stem cell products ensured the availability of products at the start of conditioning for hematopoietic cell transplantation (HCT). Following recommendations from unrelated donor registries, including the National Marrow Donor Program, many centers began to cryopreserve related donor peripheral blood stem cell (PBSC) products. Throughout this process, several centers have published outcomes with cryopreserved versus fresh products, some with conflicting results. Even though cryopreservation was initially considered only a temporary measure driven by the pandemic, potential advantages include greater flexibility of transplantation timing. However, concerns about detrimental effects of cryopreservation, including increased risk of graft rejection, relapse, and consequent mortality, remained. The primary objective of the present study was to describe our center's experience comparing outcomes following PBSC transplantation with cryopreserved versus fresh grafts. This was an observational case study with a retrospective review comparing cryopreserved grafts (n = 213) to a recent historical cohort (controls) using fresh grafts (n = 167). In multivariable analyses, the adjusted hazard ratio (HR) for fresh versus cryopreserved grafts was 1.20 (95% confidence interval [CI], .79 to 1.82; P = .40) for overall mortality, .99 (95% CI, .55 to 1.77; P = .98) for nonrelapse mortality, and .94 (95% CI, .60 to 1.48; P = .80) for relapse. The adjusted HR for platelet engraftment was 1.31 (95% CI, 1.05 to 1.63; P = .02) and the odds ratio of grade III-IV acute GVHD was 1.75 (95% CI, 1.01 to 3.04; P = .05) with fresh grafts compared to cryopreserved grafts. There was no demonstrable difference in the risk of chronic GHVD. Although longer-term follow-up is needed, these data provide preliminary reassurance that in the event of another pandemic or should the logistical need arise in individual patients, cryopreservation of PBSC products is a reasonably safe alternative.
Connelly-Smith L
,Gooley T
,Roberts L
,Mielcarek M
,Linenberger M
,Petersdorf E
,Sandmaier BM
,Milano F
... -
《-》