Development of a Monte Carlo simulation model to predict pasteurized fluid milk spoilage due to post-pasteurization contamination with gram-negative bacteria.

来自 PUBMED

作者:

Lau STrmcic AMartin NHWiedmann MMurphy SI

展开

摘要:

Psychrotolerant gram-negative bacteria introduced as post-pasteurization contamination (PPC) are a major cause of spoilage and reduced shelf life of high-temperature, short-time pasteurized fluid milk. To provide improved tools to (1) predict pasteurized fluid milk shelf life as influenced by PPC and (2) assess the effectiveness of different potential interventions that could reduce spoilage due to PPC, we developed a Monte Carlo simulation model that predicts fluid milk spoilage due to psychrotolerant gram-negative bacteria introduced as PPC. As a first step, 17 gram-negative bacterial isolates frequently associated with fluid milk spoilage were selected and used to generate growth data in skim milk broth at 6°C. The resulting growth parameters, frequency of isolation for the 17 different isolates, and initial concentration of bacteria in milk with PPC, were used to develop a Monte Carlo model to predict bacterial number at different days of shelf life based on storage temperature of milk. This model was then validated with data from d 7 and 10 of shelf life, collected from commercial operations. The validated model predicted that the parameters (1) maximum growth rate and (2) storage temperature had the greatest influence on the percentage of containers exceeding 20,000 cfu/mL standard plate count on d 7 and 10 (i.e., spoiling due to PPC), which indicates that accurate data on maximum growth rate and storage temperature are important for accurate predictions. In addition to allowing for prediction of fluid milk shelf life, the model allows for simulation of "what-if" scenarios, which allowed us to predict the effectiveness of different interventions to reduce overall fluid milk spoilage due to PPC through a set of proof-of-concept scenario (e.g., frequency of PPC in containers reduced from 100% to 10%; limiting distribution temperature to a maximum of 6°C). Combined with other models, such as previous models on fluid milk spoilage due to psychrotolerant spore-forming bacteria, the data and tools developed here will allow for rational, digitally enabled, fluid milk shelf life prediction and quality enhancement.

收起

展开

DOI:

10.3168/jds.2021-21316

被引量:

5

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(191)

参考文献(0)

引证文献(5)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读