Air temperature drives the evolution of mid-infrared optical properties of butterfly wings.
摘要:
This study uncovers a correlation between the mid-infrared emissivity of butterfly wings and the average air temperature of their habitats across the world. Butterflies from cooler climates have a lower mid-infrared emissivity, which limits heat losses to surroundings, and butterflies from warmer climates have a higher mid-infrared emissivity, which enhances radiative cooling. The mid-infrared emissivity showed no correlation with other investigated climatic factors. Phylogenetic independent contrasts analysis indicates the microstructures of butterfly wings may have evolved in part to regulate mid-infrared emissivity as an adaptation to climate, rather than as phylogenetic inertia. Our findings offer new insights into the role of microstructures in thermoregulation and suggest both evolutionary and physical constraints to butterflies' abilities to adapt to climate change.
收起
展开
DOI:
10.1038/s41598-021-02810-1
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(103)
参考文献(30)
引证文献(1)
来源期刊
影响因子:4.991
JCR分区: 暂无
中科院分区:暂无