Usefulness of computed tomography-measured psoas muscle thickness per height for predicting mortality in patients undergoing hemodialysis.

来自 PUBMED

作者:

Yajima TArao MYajima KTakahashi H

展开

摘要:

Computed tomography (CT)-measured psoas muscle thickness standardized for height (PMTH) has emerged as a promising predictor of mortality. The study aimed to investigate whether PMTH could accurately predict mortality in patients undergoing hemodialysis. We examined 207 patients (mean age: 63.1 years; men: 66.2%) undergoing hemodialysis for more than 6 months in hospital affiliated clinic. PMTH was calculated at the L3 vertebra level using CT. Patients were divided according to the PMTH cut-off points: 8.44 mm/m in women and 8.85 mm/m in men; thereafter, they were combined into low and high PMTH groups. PMTH was independently correlated with the simplified creatinine index (β = 0.213, P = 0.021) and geriatric nutritional risk index (β = 0.295, P < 0.0001) in multivariate regression analysis. During a median follow-up of 3.7 (1.8-6.4) years, 76 patients died, including 41 from cardiovascular causes. In the multivariate Cox regression analysis, low PMTH (adjusted hazard ratio, 2.48; 95% confidence interval, 1.36-4.70) was independently associated with an increased risk of all-cause mortality. The addition of binary PMTH groups to the baseline risk model tended to improve net reclassification improvement (0.460, p = 0.060). In conclusion, PMTH may be an indicator of protein energy wasting and a useful tool for predicting mortality in patients undergoing hemodialysis.

收起

展开

DOI:

10.1038/s41598-021-98613-5

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(103)

参考文献(38)

引证文献(8)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读