-
Ferroptosis-Related Genes in Lung Adenocarcinoma: Prognostic Signature and Immune, Drug Resistance, Mutation Analysis.
It is reported that ferroptosis has close relation with tumorigenesis and drug resistance. However, the clinical significance of ferroptosis in lung adenocarcinoma (LUAD) remains elusive, and the potential targets for ferroptosis-based treatment are limited. In this study, we constructed a 15-gene prognostic signature predicting overall survival based on ferroptosis-related genes (ferroptosis driver genes VDAC2, GLS2, FLT3, TLR4, PHKG2, phosphogluconate dehydrogenase (PGD), PANX1, KRAS, PEBP1, ALOX15, and ALOX12B, and suppressor genes ACSL3, CISD1, FANCD2, and SLC3A2) in The Cancer Genome Atlas (TCGA)-LUAD cohort. The signature's predictive ability was validated in the GSE68465 and GSE72094 cohorts by survival analysis and independent prognostic analysis with clinical features. Nomograms were provided for clinical reference. Functional analysis revealed that ferroptosis was closely related to cell cycle, cell metabolism, and immune pathways. Pan-cancer analysis comprehensively analyzed these 15 genes in 33 cancer types, indicating that the heterogeneity of 15 genes was evident across different cancer types. Besides, these genes were critical regulators modulating drug resistance, tumor microenvironment infiltration, and cancer stemness. Then, we screened 10 genes (TLR4, PHKG2, PEBP1, GLS2, FLT3, ALOX15, ACSL3, CISD1, FANCD2, and SLC3A2) as potential targets for further research because their biological functions in ferroptosis were consistent with their prognostic significance. Somatic mutation and copy number variation analysis revealed that the alteration rates of KRAS, PGD, and ALOX15 were more than 1% and significantly associated with overall survival in LUAD. Moreover, the expression of KRAS and PGD was positively related to tumor mutation burden, indicating that KRAS and PGD could serve as novel biomarkers for predicting immunotherapy response rate. Our study identified and validated a ferroptosis-related gene signature for LUAD, provided a 10-gene set for future research, and screened KRAS and PGD as potential novel immunotherapy biomarkers.
Ren Z
,Hu M
,Wang Z
,Ge J
,Zhou X
,Zhang G
,Zheng H
... -
《Frontiers in Genetics》
-
Prognostic and immune implications of a novel ferroptosis-related ten-gene signature in lung adenocarcinoma.
Lung cancer has been the focus of attention for many researchers in recent years due to its leading contribution to cancer-related death worldwide, with lung adenocarcinoma (LUAD) being the most common histological type. Ferroptosis, a novel iron-dependent form of regulated cell death, can be induced by sorafenib. Emerging evidence shows that triggering ferroptosis has potential as a cancer therapy. This work aimed to build a ferroptosis-related gene signature for predicting the outcome of LUAD.
The TCGA-LUAD dataset was set as the training cohort, and the GSE72094 and GSE68465 datasets were set as the validation cohorts. Sixty-two ferroptosis-related genes were retrieved from the literature. A univariate Cox regression model was constructed for the training cohort to preliminarily screen for potential prognostic ferroptosis-related genes. A gene signature was generated from a LASSO Cox regression model and assessed with the training and validation cohorts through Kaplan-Meier, Cox, and ROC analyses. In addition, the correlation between the risk score and autophagy-related genes was determined by the Pearson test. Finally, GSEA and immune infiltrating analyses were performed to better study the functional annotation of the signature and the role of each kind of immune cell.
A ten-gene signature was constructed from the training cohort and validated in three cohorts by Kaplan-Meier and Cox regression analyses, revealing its independent prognostic value in LUAD. Moreover, a ROC analysis conducted with all cohort data confirmed the predictive ability of the ten-gene signature for LUAD prognosis. A total of 62.85% (308/490) of autophagy-related genes were found to be significantly correlated with risk scores. GSEA detailed the exact pathways related to the gene signature, and immune-infiltrating analyses identified crucial roles for resting mast cells and resting dendritic cells in the prognosis of LUAD.
We identified a novel ferroptosis-related ten-gene signature (PHKG2, PGD, PEBP1, NCOA4, GLS2, CISD1, ATP5G3, ALOX15, ALOX12B, and ACSL3) that can accurately predict LUAD prognosis and is closely linked to resting mast cells and resting dendritic cells.
Ma C
,Li F
,Luo H
《-》
-
Development and Validation of a Robust Ferroptosis-Related Prognostic Signature in Lung Adenocarcinoma.
Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Ferroptosis is a newly recognized process of cell death, which is different from other forms of cell death in morphology, biochemistry, and genetics, and has played a vital role in cancer biology. This study aimed to identify a ferroptosis-related gene signature associated with LUAD prognosis.
Dataset TCGA-LUAD which came from the TCGA portal was taken as the training cohort. GSE72094 and GSE68465 from the GEO database were treated as validation cohorts. Two hundred fifty-nine ferroptosis-related genes were retrieved from the FerrDb database. In the training cohort, Kaplan-Meier and univariate Cox analyses were conducted for preliminary screening of ferroptosis-related genes with potential prognostic capacity. These genes then entered into the LASSO Cox regression model, constructing a gene signature. The latter was then evaluated in the training and validation cohorts via Kaplan-Meier, Cox, and ROC analyses. In addition, the correlations between risk score and autophagy were examined by Pearson correlation coefficient. The analyses of GSEA and immune infiltrating were performed for better studying the function annotation of the gene signature and the character of each kind of immune cells played in the tumor microenvironment.
A 15-gene signature was found from the training cohort and validated by Kaplan-Meier and Cox regression analyses, revealing its independent prognosis value in LUAD. Moreover, the ROC analysis was conducted, confirming a strong predictive ability that this signature owned for LUAD prognosis. One hundred fifty-one of 222 (68.01%) autophagy-related genes were discovered significantly correlated with risk scores. Analyses of GSEA and immune infiltration exhibited in detail the specific pathways that associate with the 15-gene signature and identified the crucial roles of resting mast cells and resting dendritic cells owned in the prognosis of the 15-gene signature.
In this present study, a novel ferroptosis-related 15-gene signature (RELA, ACSL3, YWHAE, EIF2S1, CISD1, DDIT4, RRM2, PANX1, TLR4, ARNTL, LPIN1, HERPUD1, NCOA4, PEBP1, and GLS2) was built. It could accurately predict the prognosis of LUAD and was related to resting mast cells and resting dendritic cells, which provide potential for the personalized outcome prediction and the development of new therapies in LUAD population.
Zhang A
,Yang J
,Ma C
,Li F
,Luo H
... -
《Frontiers in Cell and Developmental Biology》
-
Systematic Analysis and Validation of the Prognosis, Immunological Role and Biology Function of the Ferroptosis-Related lncRNA GSEC/miRNA-101-3p/CISD1 Axis in Lung Adenocarcinoma.
Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for approximately 85% of pulmonary malignancies. Emerging evidence has demonstrated that ferroptosis plays a central role in both immunities as well as tumor proliferation. However, the clinical significance, immunological function, and upstream modulatory mechanism of ferroptosis-related genes in LUAD remain unclear. Here, we utilized various bioinformatics data to identify differentially expressed (DEGs) and prognosis-related ferroptosis (FRGs) genes in LUAD. Based upon identified DEGs, FRG, and ceRNA modulatory networks were constructed. Pearson's correlation analysis was used to evaluate the correlation between FRGs and the tumor mutational burden, microsatellite instability, tumor-infiltrating immunity, cellular checkpoint control, and drug sensitivity in LUAD. A loss-of-function analysis was performed to verify the function of CISD1 in LUAD progression. Our findings revealed that certain FRGs (CISD1, ATP5MC3, PGD, SLC7A11, ACSL3, and FANCD2) are significantly upregulated in LUAD and that their elevated expression is associated with both advanced tumor stage and unfavorable prognosis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results revealed these FRGs to be primarily involved in ferroptosis and glutathione metabolism in LUAD. We constructed a prognostic FRG-based model capable of accurately predicting LUAD patient overall survival with high specificity. The upstream lncRNA GSEC/miRNA-101-3p regulatory axis involving CISD1, ATP5MC3, and PGD was identified to be relevant in tumor progression. We also found GSEC, CISD1, ATP5MC3, and PGD to be upregulated, with miRNA-101-3p downregulated, in the setting of LUAD. Immunohistochemical analysis revealed CISD1, ATP5MC3, and PGD overexpression in LUAD tissue samples; CISD1 knockdown was noted to significantly inhibit LUAD proliferation and migration. In summary, this study characterizes relevant functional roles of the lncRNA GSEC/miR-101-3p axis in the setting of LUAD and suggests diagnostic and therapeutic biomarkers potentially useful in the clinical management of this illness.
Jiang X
,Yuan Y
,Tang L
,Wang J
,Zhang D
,Duan L
... -
《-》
-
Development and Validation of a Ferroptosis-Related Gene Signature for Overall Survival Prediction in Lung Adenocarcinoma.
Background: Ferroptosis is an iron-dependent programmed cell death process. Recent studies have found that ferroptosis inducers hold promising potential in the treatment of lung adenocarcinoma (LUAD). However, the comprehensive analysis about the prognostic value of ferroptosis-related genes in LUAD remains to be elucidated. Methods: The RNA sequencing data and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A total of 259 ferroptosis-related genes were extracted from FerrDb website. The ferroptosis-related prognostic signature was developed by least absolute shrinkage and selection operator (LASSO) Cox regression analysis in TCGA LUAD cohort, and then validated by 5 independent GEO cohorts. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed to identify the difference in biological processes and functions between different risk groups. The expression levels of core prognostic genes were then verified in LUAD samples by immunohistochemistry (IHC) and erastin-treated LUAD cell lines by real-time polymerase chain reaction (PCR). The potential roles of GPX2 and DDIT4 as ferroptosis drivers in LUAD cell line were further confirmed by in vitro experiments. Results: A total of 20 intersecting genes between 70 ferroptosis-related DEGs and 45 potential prognostic genes were obtained for LASSO Cox regression analysis. The ferroptosis-related prognostic signature was developed by 7 core prognostic DEGs, and stratified LUAD patients into two risk groups. Kaplan-Meier analysis showed that the overall survival (OS) of LUAD patients in the high-risk group was significantly worse than that of the low-risk group. External validation of 5 independent GEO cohorts further confirmed that the ferroptosis-related prognostic signature was an ideal biomarker for predicting the survival of LUAD patients. Significant enrichment of fatty acid metabolism and cell cycle-related pathways were found in different risk groups. The expression patterns of 7 core prognostic genes in LUAD and adjacent normal lung tissues were validated by IHC, which was almost consistent with the results from public database. Furthermore, the changes related to cell cycle and ferroptosis after erastin treatment were also validated in LUAD cell lines. In addition, silencing GPX2 or DDIT4 could partially reverse the erastin-induced ferroptosis. Conclusion: In summary, the ferroptosis-related prognostic signature based on 7 core prognostic DEGs indicated superior predictive performance of LUAD patients. Targeting ferroptosis holds potential to be a therapeutic alternative for LUAD.
Tian Q
,Zhou Y
,Zhu L
,Gao H
,Yang J
... -
《Frontiers in Cell and Developmental Biology》