Prognostic and immune implications of a novel ferroptosis-related ten-gene signature in lung adenocarcinoma.

来自 PUBMED

作者:

Ma CLi FLuo H

展开

摘要:

Lung cancer has been the focus of attention for many researchers in recent years due to its leading contribution to cancer-related death worldwide, with lung adenocarcinoma (LUAD) being the most common histological type. Ferroptosis, a novel iron-dependent form of regulated cell death, can be induced by sorafenib. Emerging evidence shows that triggering ferroptosis has potential as a cancer therapy. This work aimed to build a ferroptosis-related gene signature for predicting the outcome of LUAD. The TCGA-LUAD dataset was set as the training cohort, and the GSE72094 and GSE68465 datasets were set as the validation cohorts. Sixty-two ferroptosis-related genes were retrieved from the literature. A univariate Cox regression model was constructed for the training cohort to preliminarily screen for potential prognostic ferroptosis-related genes. A gene signature was generated from a LASSO Cox regression model and assessed with the training and validation cohorts through Kaplan-Meier, Cox, and ROC analyses. In addition, the correlation between the risk score and autophagy-related genes was determined by the Pearson test. Finally, GSEA and immune infiltrating analyses were performed to better study the functional annotation of the signature and the role of each kind of immune cell. A ten-gene signature was constructed from the training cohort and validated in three cohorts by Kaplan-Meier and Cox regression analyses, revealing its independent prognostic value in LUAD. Moreover, a ROC analysis conducted with all cohort data confirmed the predictive ability of the ten-gene signature for LUAD prognosis. A total of 62.85% (308/490) of autophagy-related genes were found to be significantly correlated with risk scores. GSEA detailed the exact pathways related to the gene signature, and immune-infiltrating analyses identified crucial roles for resting mast cells and resting dendritic cells in the prognosis of LUAD. We identified a novel ferroptosis-related ten-gene signature (PHKG2, PGD, PEBP1, NCOA4, GLS2, CISD1, ATP5G3, ALOX15, ALOX12B, and ACSL3) that can accurately predict LUAD prognosis and is closely linked to resting mast cells and resting dendritic cells.

收起

展开

DOI:

10.21037/atm-20-7936

被引量:

15

年份:

2021

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(249)

参考文献(68)

引证文献(15)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读