Predicting changes in land use/land cover and seasonal land surface temperature using multi-temporal landsat images in the northwest region of Bangladesh.

来自 PUBMED

作者:

Kafy AAFaisal AAAl Rakib ARoy SFerdousi JRaikwar VKona MAFatin SMAA

展开

摘要:

Land use/land cover (LULC) variations are accelerated by rapid urbanization and significantly impacted global Land Surface Temperature (LST). The dynamic increase in LST results in the Urban Heat Island (UHI) effect. In this study, future LULC change scenarios, seasonal (summer & winter) LST variations, and LST distribution over different LULC classes were predicted using Landsat satellite images for 1999, 2009, and 2019 in Rajshahi District, Bangladesh. Cellular Automata (CA) and Artificial Neural Network (ANN) procedures were used to predict the LULC changes and seasonal LST variations for 2029 and 2039. In addition, Focus Group Discussions (FGDs) and Key Informants Interviews (KIIs) were conducted to identify the possible impacts of LULC change, LST shifts, and climate change on agricultural productivity and developed a sustainable land use management plan for the study area. Validation of the CA model demonstrated an excellent accuracy with a kappa value of 0.82. Similarly, the ANN model's validation using Mean Square Error (0.523 and 0.796 for summer) and Correlation coefficient (0.6023 and 0.831 for winter) values demonstrated a good prediction accuracy. The LULC prediction result indicated that the built-up area will be expanded by 58.03 km2 and 79.90 km2, respectively, from 2019 to 2029 and 2039. The predicted seasonal LST indicated that in 2029 and 2039, more than 23.30 % and 50.46 % of the summer and 3.02 % and 13.02 % of the winter seasons will likely be experienced LSTs greater than 35 °C. The results of public participation exposed that changes in LULC classes, variations in LST, and climate change significantly impact the regional biodiversity (loss of farmland and water bodies), reduce agricultural productivity, and increase extreme weather events (flood, heavy rainfall, and cold/warm temperature). This study provides the useful guidelines for agricultural officers, urban planners, and environmental engineers to understand the spatial configurations of built-up area enlargement and provide effective policy measures to conserve farming lands to ensure environmental sustainability.

收起

展开

DOI:

10.1016/j.heliyon.2021.e07623

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(399)

参考文献(3)

引证文献(4)

来源期刊

Heliyon

影响因子:3.772

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读