Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy.

来自 PUBMED

作者:

Xiong JLi FSong DTang GHe JGao KZhang HCheng WSong YLin FHu KWang POlivia Li JPAung TQiao YZhang XTing D

展开

摘要:

To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON). Cross-sectional study. Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients. FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects. Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input). FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931-0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834-0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768-0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847-0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849-0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805-0.912]) in the internal test set. FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.

收起

展开

DOI:

10.1016/j.ophtha.2021.07.032

被引量:

24

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(308)

参考文献(0)

引证文献(24)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读