Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
摘要:
To compare the diagnostic performance of human gradings vs predictions provided by a machine-to-machine (M2M) deep learning (DL) algorithm trained to quantify retinal nerve fiber layer (RNFL) damage on fundus photographs. Evaluation of a machine learning algorithm. An M2M DL algorithm trained with RNFL thickness parameters from spectral-domain optical coherence tomography was applied to a subset of 490 fundus photos of 490 eyes of 370 subjects graded by 2 glaucoma specialists for the probability of glaucomatous optical neuropathy (GON), and estimates of cup-to-disc (C/D) ratios. Spearman correlations with standard automated perimetry (SAP) global indices were compared between the human gradings vs the M2M DL-predicted RNFL thickness values. The area under the receiver operating characteristic curves (AUC) and partial AUC for the region of clinically meaningful specificity (85%-100%) were used to compare the ability of each output to discriminate eyes with repeatable glaucomatous SAP defects vs eyes with normal fields. The M2M DL-predicted RNFL thickness had a significantly stronger absolute correlation with SAP mean deviation (rho=0.54) than the probability of GON given by human graders (rho=0.48; P < .001). The partial AUC for the M2M DL algorithm was significantly higher than that for the probability of GON by human graders (partial AUC = 0.529 vs 0.411, respectively; P = .016). An M2M DL algorithm performed as well as, if not better than, human graders at detecting eyes with repeatable glaucomatous visual field loss. This DL algorithm could potentially replace human graders in population screening efforts for glaucoma.
收起
展开
DOI:
10.1016/j.ajo.2019.11.006
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(306)
参考文献(30)
引证文献(41)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无