Shiga Toxin-Producing Escherichia coli in Feces of Finisher Pigs: Isolation, Identification, and Public Health Implications of Major and Minor Serogroups†.
Shiga toxin-producing Escherichia coli (STEC) are major foodborne human pathogens that cause mild to hemorrhagic colitis, which could lead to complications of hemolytic uremic syndrome. Seven serogroups, O26, O45, O103, O111, O121, O145, and O157, account for the majority of the STEC illnesses in the United States. Shiga toxins 1 and 2, encoded by stx1 and stx2, respectively, and intimin, encoded by eae gene, are major virulence factors. Cattle are a major reservoir of STEC, but swine also harbor them in the hindgut and shed STEC in the feces. Our objectives were to use a culture method to isolate and identify major and minor serogroups of STEC in finisher pig feces. Shiga toxin genes were subtyped to assess public health implications of STEC. Fecal samples (n = 598) from finisher pigs, collected from 10 pig flows, were enriched in E. coli broth and tested for stx1, stx2, and eae by a multiplex PCR (mPCR) assay. Samples positive for stx1 or stx2 gene were subjected to culture methods, with or without immunomagnetic separation and plating on selective or nonselective media, for isolation and identification of stx-positive isolates. The culture method yielded a total of 178 isolates belonging to 23 serogroups. The three predominant serogroups were O8, O86, and O121. The 178 STEC strains included 26 strains with stx1a and 152 strains with stx2e subtypes. Strains with stx1a, particularly in association with eae (O26 and O103), have the potential to cause severe human infections. All stx2-positive isolates carried the subtype stx2e, a subtype that causes edema disease in swine, but is rarely involved in human infections. Several strains were also positive for genes that encode for enterotoxins, which are involved in neonatal and postweaning diarrhea in swine. In conclusion, our study showed that healthy finisher pigs harbored and shed several serogroups of E. coli carrying virulence genes involved in neonatal diarrhea, postweaning diarrhea, and edema disease, but prevalence of STEC of public health importance was low.
Remfry SE
,Amachawadi RG
,Shi X
,Bai J
,Tokach MD
,Dritz SS
,Goodband RD
,Derouchey JM
,Woodworth JC
,Nagaraja TG
... -
《-》
Multiplex PCR Assays for the Detection of One Hundred and Thirty Seven Serogroups of Shiga Toxin-Producing Escherichia coli Associated With Cattle.
Escherichia coli carrying prophage with genes that encode for Shiga toxins are categorized as Shiga toxin-producing E. coli (STEC) pathotype. Illnesses caused by STEC in humans, which are often foodborne, range from mild to bloody diarrhea with life-threatening complications of renal failure and hemolytic uremic syndrome and even death, particularly in children. As many as 158 of the total 187 serogroups of E. coli are known to carry Shiga toxin genes, which makes STEC a major pathotype of E. coli. Seven STEC serogroups, called top-7, which include O26, O45, O103, O111, O121, O145, and O157, are responsible for the majority of the STEC-associated human illnesses. The STEC serogroups, other than the top-7, called "non-top-7" have also been associated with human illnesses, more often as sporadic infections. Ruminants, particularly cattle, are principal reservoirs of STEC and harbor the organisms in the hindgut and shed in the feces, which serves as a major source of food and water contaminations. A number of studies have reported on the fecal prevalence of top-7 STEC in cattle feces. However, there is paucity of data on the prevalence of non-top-7 STEC serogroups in cattle feces, generally because of lack of validated detection methods. The objective of our study was to develop and validate 14 sets of multiplex PCR (mPCR) assays targeting serogroup-specific genes to detect 137 non-top-7 STEC serogroups previously reported to be present in cattle feces. Each assay included 7-12 serogroups and primers were designed to amplify the target genes with distinct amplicon sizes for each serogroup that can be readily identified within each assay. The assays were validated with 460 strains of known serogroups. The multiplex PCR assays designed in our study can be readily adapted by most laboratories for rapid identification of strains belonging to the non-top-7 STEC serogroups associated with cattle.
Ludwig JB
,Shi X
,Shridhar PB
,Roberts EL
,DebRoy C
,Phebus RK
,Bai J
,Nagaraja TG
... -
《Frontiers in Cellular and Infection Microbiology》
Virulence genes, Shiga toxin subtypes, major O-serogroups, and phylogenetic background of Shiga toxin-producing Escherichia coli strains isolated from cattle in Iran.
The aim of this study was to investigate the virulence potential of the isolated bovine STEC for humans in Iran. In this study a collection of STEC strains (n = 50) had been provided via four stages, including sampling from feces of cattle, E. coli isolation, molecular screening of Shiga toxin (stx) genes, and saving the STEC strains from various geographical areas in Iran. The STEC isolates were subjected to stx-subtyping, O-serogrouping, and phylo-grouping by conventional polymerase chain reaction (PCR). Occurrence of stx1 (52%) and stx2 (64%) was not significantly different (p = 0.1), and 16% of isolates carried both stx1 and stx2, simultaneously. In addition, 36% and 80% of the isolates were positive for eae and ehxA, respectively. Molecular subtyping showed that stx1a (52%), stx2a (44%), stx2c (44%), and stx2d (30%) were the most prevalent subtypes; two combinations stx2a/stx2c and stx2c/stx2d coexisted in 18% and 10% of STEC strains, respectively. Three important non-O157 serogroups, including O113 (20%), O26 (12%), and O111 (10%), were predominant, and none of the isolates belonged to O157. Importantly, one O26 isolate carried stx1, stx2, eae and ehxA and revealed highly virulent stx subtypes. Moreover, all the 21 serogrouped strains belonged to the B1 phylo-type. Our study highlights the significance of non-O157 STEC strains carrying highly pathogenic virulence genes in cattle population as the source of this pathogen in Iran. Since non-O157 STEC strains are not routinely tried in most diagnostic laboratories, majority of the STEC-associated human infections appear to be overlooked in the clinical settings.
Jajarmi M
,Imani Fooladi AA
,Badouei MA
,Ahmadi A
... -
《-》