Initiatives, Concepts, and Implementation Practices of FAIR (Findable, Accessible, Interoperable, and Reusable) Data Principles in Health Data Stewardship Practice: Protocol for a Scoping Review.

来自 PUBMED

作者:

Inau ETSack JWaltemath DZeleke AA

展开

摘要:

Data stewardship is an essential driver of research and clinical practice. Data collection, storage, access, sharing, and analytics are dependent on the proper and consistent use of data management principles among the investigators. Since 2016, the FAIR (findable, accessible, interoperable, and reusable) guiding principles for research data management have been resonating in scientific communities. Enabling data to be findable, accessible, interoperable, and reusable is currently believed to strengthen data sharing, reduce duplicated efforts, and move toward harmonization of data from heterogeneous unconnected data silos. FAIR initiatives and implementation trends are rising in different facets of scientific domains. It is important to understand the concepts and implementation practices of the FAIR data principles as applied to human health data by studying the flourishing initiatives and implementation lessons relevant to improved health research, particularly for data sharing during the coronavirus pandemic. This paper aims to conduct a scoping review to identify concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in the health data domain. The Arksey and O'Malley stage-based methodological framework for scoping reviews will be used for this review. PubMed, Web of Science, and Google Scholar will be searched to access relevant primary and grey publications. Articles written in English and published from 2014 onwards with FAIR principle concepts or practices in the health domain will be included. Duplication among the 3 data sources will be removed using a reference management software. The articles will then be exported to a systematic review management software. At least two independent authors will review the eligibility of each article based on defined inclusion and exclusion criteria. A pretested charting tool will be used to extract relevant information from the full-text papers. Qualitative thematic synthesis analysis methods will be employed by coding and developing themes. Themes will be derived from the research questions and contents in the included papers. The results will be reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews) reporting guidelines. We anticipate finalizing the manuscript for this work in 2021. We believe comprehensive information about the FAIR data principles, initiatives, implementation practices, and lessons learned in the FAIRification process in the health domain is paramount to supporting both evidence-based clinical practice and research transparency in the era of big data and open research publishing. PRR1-10.2196/22505.

收起

展开

DOI:

10.2196/22505

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(22)

引证文献(14)

来源期刊

JMIR Research Protocols

影响因子:0

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读