Multiparametric magnetic resonance imaging and clinical variables: Which is the best combination to predict reclassification in active surveillance patients?

来自 PUBMED

摘要:

We tested the role of multiparametric magnetic resonance imaging (mpMRI) in disease reclassification and whether the combination of mpMRI and clinicopathological variables could represent the most accurate approach to predict the risk of reclassification during active surveillance. Three-hundred eighty-nine patients (pts) underwent mpMRI and subsequent confirmatory or follow-up biopsy according to the Prostate Cancer Research International Active Surveillance (PRIAS) protocol. Pts with negative (-) mpMRI underwent systematic random biopsy. Pts with positive (+) mpMRI [Prostate Imaging Reporting and Data System, version 2 (PI-RADS-V2) score ≥3] underwent targeted + systematic random biopsies. Multivariate analyses were used to create three models predicting the probability of reclassification [International Society of Urological Pathology ≥ Grade Group 2 (GG2)]: a basic model including only clinical variables (age, prostate-specific antigen density, and number of positive cores at baseline), an Magnetic resonance imaging (MRI) model including only the PI-RADS score, and a full model including both the previous ones. The predictive accuracy (PA) of each model was quantified using the area under the curve. mpMRI negative (-) was recorded in 127 (32.6%) pts; mpMRI positive (+) was recorded in 262 pts: 72 (18.5%) had PI-RADS 3, 150 (38.6%) PI-RADS 4, and 40 (10.3%) PI-RADS 5 lesions. At a median follow-up of 12 months, 125 pts (32%) were reclassified to GG2 prostate cancer. The rate of reclassification to GG2 prostate cancer was 17%, 35%, 38%, and 52% for mpMRI (-), PI-RADS 3, 4, and 5, respectively (P < 0.001). The PA was 69% and 64% in the basic and MRI models, respectively. The full model had the best PA of 74%: older age (P = 0.023; Odds ratio (OR) = 1.040), prostate-specific antigen density (P = 0.037; OR = 1.324), number of positive cores at baseline (P = 0.001; OR = 1.441), and PI-RADS 3, 4, and 5 (overall P = 0.001; OR = 2.458, 3.007, and 3.898, respectively) were independent predictors of reclassification. Disease reclassification increased according to the PI-RADS score increase, at confirmatory or follow-up biopsy. However, a no-negligible rate of reclassification was found also in cases of mpMRI (-). The combination of mpMRI and clinicopathological variables still represents the most accurate approach to pts on active surveillance.

收起

展开

DOI:

10.1016/j.prnil.2020.05.003

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(140)

参考文献(23)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读