-
Generating real-world evidence from unstructured clinical notes to examine clinical utility of genetic tests: use case in BRCAness.
Zhao Y
,Weroha SJ
,Goode EL
,Liu H
,Wang C
... -
《BMC Medical Informatics and Decision Making》
-
Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data.
Patient-generated health data (PGHD) captured via smart devices or digital health technologies can reflect an individual health journey. PGHD enables tracking and monitoring of personal health conditions, symptoms, and medications out of the clinic, which is crucial for self-care and shared clinical decisions. In addition to self-reported measures and structured PGHD (eg, self-screening, sensor-based biometric data), free-text and unstructured PGHD (eg, patient care note, medical diary) can provide a broader view of a patient's journey and health condition. Natural language processing (NLP) is used to process and analyze unstructured data to create meaningful summaries and insights, showing promise to improve the utilization of PGHD.
Our aim is to understand and demonstrate the feasibility of an NLP pipeline to extract medication and symptom information from real-world patient and caregiver data.
We report a secondary data analysis, using a data set collected from 24 parents of children with special health care needs (CSHCN) who were recruited via a nonrandom sampling approach. Participants used a voice-interactive app for 2 weeks, generating free-text patient notes (audio transcription or text entry). We built an NLP pipeline using a zero-shot approach (adaptive to low-resource settings). We used named entity recognition (NER) and medical ontologies (RXNorm and SNOMED CT [Systematized Nomenclature of Medicine Clinical Terms]) to identify medication and symptoms. Sentence-level dependency parse trees and part-of-speech tags were used to extract additional entity information using the syntactic properties of a note. We assessed the data; evaluated the pipeline with the patient notes; and reported the precision, recall, and F1 scores.
In total, 87 patient notes are included (audio transcriptions n=78 and text entries n=9) from 24 parents who have at least one CSHCN. The participants were between the ages of 26 and 59 years. The majority were White (n=22, 92%), had more than one child (n=16, 67%), lived in Ohio (n=22, 92%), had mid- or upper-mid household income (n=15, 62.5%), and had higher level education (n=24, 58%). Out of 87 notes, 30 were drug and medication related, and 46 were symptom related. We captured medication instances (medication, unit, quantity, and date) and symptoms satisfactorily (precision >0.65, recall >0.77, F1>0.72). These results indicate the potential when using NER and dependency parsing through an NLP pipeline on information extraction from unstructured PGHD.
The proposed NLP pipeline was found to be feasible for use with real-world unstructured PGHD to accomplish medication and symptom extraction. Unstructured PGHD can be leveraged to inform clinical decision-making, remote monitoring, and self-care including medical adherence and chronic disease management. With customizable information extraction methods using NER and medical ontologies, NLP models can feasibly extract a broad range of clinical information from unstructured PGHD in low-resource settings (eg, a limited number of patient notes or training data).
Sezgin E
,Hussain SA
,Rust S
,Huang Y
... -
《-》
-
Real world evidence in cardiovascular medicine: ensuring data validity in electronic health record-based studies.
With growing availability of digital health data and technology, health-related studies are increasingly augmented or implemented using real world data (RWD). Recent federal initiatives promote the use of RWD to make clinical assertions that influence regulatory decision-making. Our objective was to determine whether traditional real world evidence (RWE) techniques in cardiovascular medicine achieve accuracy sufficient for credible clinical assertions, also known as "regulatory-grade" RWE.
Retrospective observational study using electronic health records (EHR), 2010-2016.
A predefined set of clinical concepts was extracted from EHR structured (EHR-S) and unstructured (EHR-U) data using traditional query techniques and artificial intelligence (AI) technologies, respectively. Performance was evaluated against manually annotated cohorts using standard metrics. Accuracy was compared to pre-defined criteria for regulatory-grade. Differences in accuracy were compared using Chi-square test.
The dataset included 10 840 clinical notes. Individual concept occurrence ranged from 194 for coronary artery bypass graft to 4502 for diabetes mellitus. In EHR-S, average recall and precision were 51.7% and 98.3%, respectively and 95.5% and 95.3% in EHR-U, respectively. For each clinical concept, EHR-S accuracy was below regulatory-grade, while EHR-U met or exceeded criteria, with the exception of medications.
Identifying an appropriate RWE approach is dependent on cohorts studied and accuracy required. In this study, recall varied greatly between EHR-S and EHR-U. Overall, EHR-S did not meet regulatory grade criteria, while EHR-U did. These results suggest that recall should be routinely measured in EHR-based studes intended for regulatory use. Furthermore, advanced data and technologies may be required to achieve regulatory grade results.
Hernandez-Boussard T
,Monda KL
,Crespo BC
,Riskin D
... -
《-》
-
Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing.
Alzheimer's disease (AD) is the most common form of dementia in the United States. Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age. However, there is a lack of research studying the association between sleep and AD incidence. A major bottleneck for conducting such research is that the traditional way to acquire sleep information is time-consuming, inefficient, non-scalable, and limited to patients' subjective experience. We aim to automate the extraction of specific sleep-related patterns, such as snoring, napping, poor sleep quality, daytime sleepiness, night wakings, other sleep problems, and sleep duration, from clinical notes of AD patients. These sleep patterns are hypothesized to play a role in the incidence of AD, providing insight into the relationship between sleep and AD onset and progression.
A gold standard dataset is created from manual annotation of 570 randomly sampled clinical note documents from the adSLEEP, a corpus of 192 000 de-identified clinical notes of 7266 AD patients retrieved from the University of Pittsburgh Medical Center (UPMC). We developed a rule-based natural language processing (NLP) algorithm, machine learning models, and large language model (LLM)-based NLP algorithms to automate the extraction of sleep-related concepts, including snoring, napping, sleep problem, bad sleep quality, daytime sleepiness, night wakings, and sleep duration, from the gold standard dataset.
The annotated dataset of 482 patients comprised a predominantly White (89.2%), older adult population with an average age of 84.7 years, where females represented 64.1%, and a vast majority were non-Hispanic or Latino (94.6%). Rule-based NLP algorithm achieved the best performance of F1 across all sleep-related concepts. In terms of positive predictive value (PPV), the rule-based NLP algorithm achieved the highest PPV scores for daytime sleepiness (1.00) and sleep duration (1.00), while the machine learning models had the highest PPV for napping (0.95) and bad sleep quality (0.86), and LLAMA2 with finetuning had the highest PPV for night wakings (0.93) and sleep problem (0.89).
Although sleep information is infrequently documented in the clinical notes, the proposed rule-based NLP algorithm and LLM-based NLP algorithms still achieved promising results. In comparison, the machine learning-based approaches did not achieve good results, which is due to the small size of sleep information in the training data.
The results show that the rule-based NLP algorithm consistently achieved the best performance for all sleep concepts. This study focused on the clinical notes of patients with AD but could be extended to general sleep information extraction for other diseases.
Sivarajkumar S
,Tam TYC
,Mohammad HA
,Viggiano S
,Oniani D
,Visweswaran S
,Wang Y
... -
《-》
-
Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
Automated disease code classification using free-text medical information is important for public health surveillance. However, traditional natural language processing (NLP) pipelines are limited, so we propose a method combining word embedding with a convolutional neural network (CNN).
Our objective was to compare the performance of traditional pipelines (NLP plus supervised machine learning models) with that of word embedding combined with a CNN in conducting a classification task identifying International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) diagnosis codes in discharge notes.
We used 2 classification methods: (1) extracting from discharge notes some features (terms, n-gram phrases, and SNOMED CT categories) that we used to train a set of supervised machine learning models (support vector machine, random forests, and gradient boosting machine), and (2) building a feature matrix, by a pretrained word embedding model, that we used to train a CNN. We used these methods to identify the chapter-level ICD-10-CM diagnosis codes in a set of discharge notes. We conducted the evaluation using 103,390 discharge notes covering patients hospitalized from June 1, 2015 to January 31, 2017 in the Tri-Service General Hospital in Taipei, Taiwan. We used the receiver operating characteristic curve as an evaluation measure, and calculated the area under the curve (AUC) and F-measure as the global measure of effectiveness.
In 5-fold cross-validation tests, our method had a higher testing accuracy (mean AUC 0.9696; mean F-measure 0.9086) than traditional NLP-based approaches (mean AUC range 0.8183-0.9571; mean F-measure range 0.5050-0.8739). A real-world simulation that split the training sample and the testing sample by date verified this result (mean AUC 0.9645; mean F-measure 0.9003 using the proposed method). Further analysis showed that the convolutional layers of the CNN effectively identified a large number of keywords and automatically extracted enough concepts to predict the diagnosis codes.
Word embedding combined with a CNN showed outstanding performance compared with traditional methods, needing very little data preprocessing. This shows that future studies will not be limited by incomplete dictionaries. A large amount of unstructured information from free-text medical writing will be extracted by automated approaches in the future, and we believe that the health care field is about to enter the age of big data.
Lin C
,Hsu CJ
,Lou YS
,Yeh SJ
,Lee CC
,Su SL
,Chen HC
... -
《JOURNAL OF MEDICAL INTERNET RESEARCH》