-
Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing.
Alzheimer's disease (AD) is the most common form of dementia in the United States. Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age. However, there is a lack of research studying the association between sleep and AD incidence. A major bottleneck for conducting such research is that the traditional way to acquire sleep information is time-consuming, inefficient, non-scalable, and limited to patients' subjective experience. We aim to automate the extraction of specific sleep-related patterns, such as snoring, napping, poor sleep quality, daytime sleepiness, night wakings, other sleep problems, and sleep duration, from clinical notes of AD patients. These sleep patterns are hypothesized to play a role in the incidence of AD, providing insight into the relationship between sleep and AD onset and progression.
A gold standard dataset is created from manual annotation of 570 randomly sampled clinical note documents from the adSLEEP, a corpus of 192 000 de-identified clinical notes of 7266 AD patients retrieved from the University of Pittsburgh Medical Center (UPMC). We developed a rule-based natural language processing (NLP) algorithm, machine learning models, and large language model (LLM)-based NLP algorithms to automate the extraction of sleep-related concepts, including snoring, napping, sleep problem, bad sleep quality, daytime sleepiness, night wakings, and sleep duration, from the gold standard dataset.
The annotated dataset of 482 patients comprised a predominantly White (89.2%), older adult population with an average age of 84.7 years, where females represented 64.1%, and a vast majority were non-Hispanic or Latino (94.6%). Rule-based NLP algorithm achieved the best performance of F1 across all sleep-related concepts. In terms of positive predictive value (PPV), the rule-based NLP algorithm achieved the highest PPV scores for daytime sleepiness (1.00) and sleep duration (1.00), while the machine learning models had the highest PPV for napping (0.95) and bad sleep quality (0.86), and LLAMA2 with finetuning had the highest PPV for night wakings (0.93) and sleep problem (0.89).
Although sleep information is infrequently documented in the clinical notes, the proposed rule-based NLP algorithm and LLM-based NLP algorithms still achieved promising results. In comparison, the machine learning-based approaches did not achieve good results, which is due to the small size of sleep information in the training data.
The results show that the rule-based NLP algorithm consistently achieved the best performance for all sleep concepts. This study focused on the clinical notes of patients with AD but could be extended to general sleep information extraction for other diseases.
Sivarajkumar S
,Tam TYC
,Mohammad HA
,Viggiano S
,Oniani D
,Visweswaran S
,Wang Y
... -
《-》
-
Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study.
The rehabilitation of a patient who had a stroke requires precise, personalized treatment plans. Natural language processing (NLP) offers the potential to extract valuable exercise information from clinical notes, aiding in the development of more effective rehabilitation strategies.
This study aims to develop and evaluate a variety of NLP algorithms to extract and categorize physical rehabilitation exercise information from the clinical notes of patients who had a stroke treated at the University of Pittsburgh Medical Center.
A cohort of 13,605 patients diagnosed with stroke was identified, and their clinical notes containing rehabilitation therapy notes were retrieved. A comprehensive clinical ontology was created to represent various aspects of physical rehabilitation exercises. State-of-the-art NLP algorithms were then developed and compared, including rule-based, machine learning-based algorithms (support vector machine, logistic regression, gradient boosting, and AdaBoost) and large language model (LLM)-based algorithms (ChatGPT [OpenAI]). The study focused on key performance metrics, particularly F1-scores, to evaluate algorithm effectiveness.
The analysis was conducted on a data set comprising 23,724 notes with detailed demographic and clinical characteristics. The rule-based NLP algorithm demonstrated superior performance in most areas, particularly in detecting the "Right Side" location with an F1-score of 0.975, outperforming gradient boosting by 0.063. Gradient boosting excelled in "Lower Extremity" location detection (F1-score: 0.978), surpassing rule-based NLP by 0.023. It also showed notable performance in the "Passive Range of Motion" detection with an F1-score of 0.970, a 0.032 improvement over rule-based NLP. The rule-based algorithm efficiently handled "Duration," "Sets," and "Reps" with F1-scores up to 0.65. LLM-based NLP, particularly ChatGPT with few-shot prompts, achieved high recall but generally lower precision and F1-scores. However, it notably excelled in "Backward Plane" motion detection, achieving an F1-score of 0.846, surpassing the rule-based algorithm's 0.720.
The study successfully developed and evaluated multiple NLP algorithms, revealing the strengths and weaknesses of each in extracting physical rehabilitation exercise information from clinical notes. The detailed ontology and the robust performance of the rule-based and gradient boosting algorithms demonstrate significant potential for enhancing precision rehabilitation. These findings contribute to the ongoing efforts to integrate advanced NLP techniques into health care, moving toward predictive models that can recommend personalized rehabilitation treatments for optimal patient outcomes.
Sivarajkumar S
,Gao F
,Denny P
,Aldhahwani B
,Visweswaran S
,Bove A
,Wang Y
... -
《-》
-
Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records.
To develop a natural language processing (NLP) algorithm that identifies social determinants of health (SDoH), including housing, transportation, food, and medication insecurities, social isolation, abuse, neglect, or exploitation, and financial difficulties for patients with Alzheimer's disease and related dementias (ADRD) from unstructured electronic health records (EHRs).
We leveraged 1000 medical notes randomly selected from 7401 emergency department and inpatient social worker notes generated between 2015 and 2019 for 231 unique patients diagnosed with ADRD at Michigan Medicine.
We developed a rule-based NLP algorithm for the identification of seven domains of SDoH noted above. We also compared the rule-based algorithm with deep learning and regularized logistic regression approaches. These models were compared using accuracy, sensitivity, specificity, F1 score, and the area under the receiver operating characteristic curve (AUC). All notes were split into 700 notes for training NLP algorithms, and 300 notes for validation.
Social worker notes used in this study were extracted from the Michigan Medicine EHR database.
Of the 700 notes for training, F1 and AUC for the rule-based algorithm were at least 0.94 and 0.95, respectively, for all SDoH categories. Of the 300 notes for validation, F1 and AUC were at least 0.80 and 0.97, respectively, for all SDoH except housing and medication insecurities. The deep learning and regularized logistic regression algorithms had unsatisfactory performance.
The rule-based algorithm can accurately extract SDoH information in all seven domains of SDoH except housing and medication insecurities. Findings from the algorithm can be used by clinicians and social workers to proactively address social needs of patients with ADRD and other vulnerable patient populations.
Wu W
,Holkeboer KJ
,Kolawole TO
,Carbone L
,Mahmoudi E
... -
《-》
-
Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision.
Since no effective therapies exist for Alzheimer's disease (AD), prevention has become more critical through lifestyle status changes and interventions. Analyzing electronic health records (EHRs) of patients with AD can help us better understand lifestyle's effect on AD. However, lifestyle information is typically stored in clinical narratives. Thus, the objective of the study was to compare different natural language processing (NLP) models on classifying the lifestyle statuses (e.g., physical activity and excessive diet) from clinical texts in English.
Based on the collected concept unique identifiers (CUIs) associated with the lifestyle status, we extracted all related EHRs for patients with AD from the Clinical Data Repository (CDR) of the University of Minnesota (UMN). We automatically generated labels for the training data by using a rule-based NLP algorithm. We conducted weak supervision for pre-trained Bidirectional Encoder Representations from Transformers (BERT) models and three traditional machine learning models as baseline models on the weakly labeled training corpus. These models include the BERT base model, PubMedBERT (abstracts + full text), PubMedBERT (only abstracts), Unified Medical Language System (UMLS) BERT, Bio BERT, Bio-clinical BERT, logistic regression, support vector machine, and random forest. The rule-based model used for weak supervision was tested on the GSC for comparison. We performed two case studies: physical activity and excessive diet, in order to validate the effectiveness of BERT models in classifying lifestyle status for all models were evaluated and compared on the developed Gold Standard Corpus (GSC) on the two case studies.
The UMLS BERT model achieved the best performance for classifying status of physical activity, with its precision, recall, and F-1 scores of 0.93, 0.93, and 0.92, respectively. Regarding classifying excessive diet, the Bio-clinical BERT model showed the best performance with precision, recall, and F-1 scores of 0.93, 0.93, and 0.93, respectively.
The proposed approach leveraging weak supervision could significantly increase the sample size, which is required for training the deep learning models. By comparing with the traditional machine learning models, the study also demonstrates the high performance of BERT models for classifying lifestyle status for Alzheimer's disease in clinical notes.
Shen Z
,Schutte D
,Yi Y
,Bompelli A
,Yu F
,Wang Y
,Zhang R
... -
《BMC Medical Informatics and Decision Making》
-
Ensembles of natural language processing systems for portable phenotyping solutions.
Manually curating standardized phenotypic concepts such as Human Phenotype Ontology (HPO) terms from narrative text in electronic health records (EHRs) is time consuming and error prone. Natural language processing (NLP) techniques can facilitate automated phenotype extraction and thus improve the efficiency of curating clinical phenotypes from clinical texts. While individual NLP systems can perform well for a single cohort, an ensemble-based method might shed light on increasing the portability of NLP pipelines across different cohorts.
We compared four NLP systems, MetaMapLite, MedLEE, ClinPhen and cTAKES, and four ensemble techniques, including intersection, union, majority-voting and machine learning, for extracting generic phenotypic concepts. We addressed two important research questions regarding automated phenotype recognition. First, we evaluated the performance of different approaches in identifying generic phenotypic concepts. Second, we compared the performance of different methods to identify patient-specific phenotypic concepts. To better quantify the effects caused by concept granularity differences on performance, we developed a novel evaluation metric that considered concept hierarchies and frequencies. Each of the approaches was evaluated on a gold standard set of clinical documents annotated by clinical experts. One dataset containing 1,609 concepts derived from 50 clinical notes from two different institutions was used in both evaluations, and an additional dataset of 608 concepts derived from 50 case report abstracts obtained from PubMed was used for evaluation of identifying generic phenotypic concepts only.
For generic phenotypic concept recognition, the top three performers in the NYP/CUIMC dataset are union ensemble (F1, 0.634), training-based ensemble (F1, 0.632), and majority vote-based ensemble (F1, 0.622). In the Mayo dataset, the top three are majority vote-based ensemble (F1, 0.642), cTAKES (F1, 0.615), and MedLEE (F1, 0.559). In the PubMed dataset, the top three are majority vote-based ensemble (F1, 0.719), training-based (F1, 0.696) and MetaMapLite (F1, 0.694). For identifying patient specific phenotypes, the top three performers in the NYP/CUIMC dataset are majority vote-based ensemble (F1, 0.610), MedLEE (F1, 0.609), and training-based ensemble (F1, 0.585). In the Mayo dataset, the top three are majority vote-based ensemble (F1, 0.604), cTAKES (F1, 0.531) and MedLEE (F1, 0.527).
Our study demonstrates that ensembles of natural language processing can improve both generic phenotypic concept recognition and patient specific phenotypic concept identification over individual systems. Among the individual NLP systems, each individual system performed best when they were applied in the dataset that they were primary designed for. However, combining multiple NLP systems to create an ensemble can generally improve the performance. Specifically, the ensemble can increase the results reproducibility across different cohorts and tasks, and thus provide a more portable phenotyping solution compared to individual NLP systems.
Liu C
,Ta CN
,Rogers JR
,Li Z
,Lee J
,Butler AM
,Shang N
,Kury FSP
,Wang L
,Shen F
,Liu H
,Ena L
,Friedman C
,Weng C
... -
《-》