Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis.

来自 PUBMED

作者:

Ran ARCheung CYWang XChen HLuo LYChan PPWong MOMChang RTMannil SSYoung ALYung HWPang CPHeng PATham CC

展开

摘要:

Spectral-domain optical coherence tomography (SDOCT) can be used to detect glaucomatous optic neuropathy, but human expertise in interpretation of SDOCT is limited. We aimed to develop and validate a three-dimensional (3D) deep-learning system using SDOCT volumes to detect glaucomatous optic neuropathy. We retrospectively collected a dataset including 4877 SDOCT volumes of optic disc cube for training (60%), testing (20%), and primary validation (20%) from electronic medical and research records at the Chinese University of Hong Kong Eye Centre (Hong Kong, China) and the Hong Kong Eye Hospital (Hong Kong, China). Residual network was used to build the 3D deep-learning system. Three independent datasets (two from Hong Kong and one from Stanford, CA, USA), including 546, 267, and 1231 SDOCT volumes, respectively, were used for external validation of the deep-learning system. Volumes were labelled as having or not having glaucomatous optic neuropathy according to the criteria of retinal nerve fibre layer thinning on reliable SDOCT images with position-correlated visual field defect. Heatmaps were generated for qualitative assessments. 6921 SDOCT volumes from 1 384 200 two-dimensional cross-sectional scans were studied. The 3D deep-learning system had an area under the receiver operation characteristics curve (AUROC) of 0·969 (95% CI 0·960-0·976), sensitivity of 89% (95% CI 83-93), specificity of 96% (92-99), and accuracy of 91% (89-93) in the primary validation, outperforming a two-dimensional deep-learning system that was trained on en face fundus images (AUROC 0·921 [0·905-0·937]; p<0·0001). The 3D deep-learning system performed similarly in the external validation datasets, with AUROCs of 0·893-0·897, sensitivities of 78-90%, specificities of 79-86%, and accuracies of 80-86%. The heatmaps of glaucomatous optic neuropathy showed that the learned features by the 3D deep-learning system used for detection of glaucomatous optic neuropathy were similar to those used by clinicians. The proposed 3D deep-learning system performed well in detection of glaucomatous optic neuropathy in both primary and external validations. Further prospective studies are needed to estimate the incremental cost-effectiveness of incorporation of an artificial intelligence-based model for glaucoma screening. Hong Kong Research Grants Council.

收起

展开

DOI:

10.1016/S2589-7500(19)30085-8

被引量:

48

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(227)

参考文献(0)

引证文献(48)

来源期刊

The Lancet Digital Health

影响因子:36.578

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读