Curcumin Improves the Renal Autophagy in Rat Experimental Membranous Nephropathy via Regulating the PI3K/AKT/mTOR and Nrf2/HO-1 Signaling Pathways.
摘要:
Membranous nephropathy (MN, also known as membranous glomerulopathy) is one of the many glomerular diseases causing nephrotic syndrome. The literature indicates that autophagy is associated with the homeostasis of podocytes in glomeruli. Curcumin, the main active component in turmeric, has drawn attention for its effective bioactivities against chronic kidney disease. The current study was aimed at assessing the effects of curcumin and exploring the underlying mechanism that mediates autophagy in an animal model of passive Heymann nephritis (PHN) in rats. Passive Heymann nephritis (PHN) was induced in male SD rats by intraperitoneal injection of anti-Fx1A serum. The rats were divided into 3 groups: control (n = 10, normal diet), model group (n = 10, 0.5% sodium carboxymethylcellulose), and curcumin (n = 10, 300 mg/kg/d). The kidney function and oxidative stress indicators were measured using commercial diagnostic kits, and the histomorphology of renal tissues was observed. The number of podocytes was measured by immunohistochemistry. Meanwhile, the autophagosomes in podocyte were analyzed by transmission electron microscopy and the immunofluorescence assay pointing to p62, an autophagic marker. Western blot analyzed the levels of apoptosis, autophagy, PI3K/AKT/mTOR, and Nrf2/HO-1 pathway-associated proteins. The total cholesterol (TC), triglycerides (TG), creatinine (Scr), blood urea nitrogen (BUN), urine volume, and urine albumin of PHN rats were significantly reduced by the administration of curcumin and attenuated renal histomorphological changes in model rats. Meanwhile, curcumin improved the oxidative stress response by decreasing MDA and increasing SOD, GSH, and CAT levels in the kidney of PHN rats. Furthermore, curcumin significantly ameliorated the podocyte loss, along with the fusion, and increased the autophagic vacuoles compared to the PHN control rats. In addition, curcumin downregulated the expression of Bax, Caspase-3, p62, PI3K, p-AKT, and p-mTOR proteins and upregulated the Bcl-2, beclin1, LC3, Nrf2, and HO-1 levels in this animal model. The results provide a scientific basis that curcumin could significantly alleviate the development of MN by inducing autophagy and alleviating renal oxidative stress through the PI3K/AKT/mTOR and Nrf2/HO-1 pathways.
收起
展开
DOI:
10.1155/2020/7069052
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(462)
参考文献(45)
引证文献(46)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无