Isoferulic acid regulates CXCL12/CXCR4-mediated apoptosis and autophagy in podocyte and mice with STZ-induced diabetic nephropathy.
Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus and a major cause of end-stage renal disease. Isoferulic acid (IFA) is a phenolic compound that has strong antioxidant, anti-inflammatory, and hypoglycemic effects. Researches and our previous study showed the potential anti-diabetic capacity and anti- oxidative stress damage targeting podocytes of IFA. The purpose of this study was to investigate whether IFA protects MPC5 podocytes from high glucose damage and alleviates DN symptoms in STZ-induced mice, as well as to explore the mechanism. The findings revealed that IFA (10, 25, 50 μM) significantly reduced high glucose-mediated toxicity, abnormal motility and morphology, ROS release, Ca2+ elevation with MPTP opening, apoptotic alterations with Caspase-3/7 activity increase and CXCL12 chemotaxis and interaction with CXCR4 in MPC5 podocytes. Furthermore, IFA increased Podocalyxin and LC3 II/I ratio. Meanwhile, IFA suppressed p53, mTOR, CASK, and p62. Furthermore, IFA has the ability to directly influence downstream mTOR, p53, and CASK apoptotic and podocyte motility regulatory targets when inhibiting the CXCL12/CXCR4 signaling pathway. In the sequent in vivo experiment, the results showed STZ-induced DN mice had higher kidney index, urination, UACR, lipid metabolism abnormalities and renal dysfunction, raised blood glucose, and podocyte damage than normal C57BL/6 mice. However, IFA treatment (50 mg/kg, 25 mg/kg, and 12.5 mg/kg) for 10 weeks restored the DN symptoms in the mice. IFA treatment elevated LC3B and LC3 II/I ratios and decreased p62 via suppressing chemokine axis CXCL12/CXCR4 with PI3K/Akt/mTOR, MMP9, and NF-κB p65 and activating podocyte markers WT1, nephrin, and Podocalyxin, thereby inducing autophagy and mitigating apoptosis in the DN mice kidneys. These findings suggest that IFA protective mechanism on kidney and podocytes simulating DN symptoms is primarily mediated by the CXCL12/CXCR4 pathways with the inactivation of apoptotic pathways and activation of autophagy.
Liu J
,Chang A
,Peng H
,Huang H
,Hu P
,Yao A
,Yin X
,Qu C
,Ni B
,Dong X
,Ni J
... -
《-》
Dapagliflozin restores autophagy and attenuates apoptosis via the AMPK/mTOR pathway in diabetic nephropathy rats and high glucose-induced HK-2 cells.
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes mellitus. Significantly reduced levels of autophagy in diabetic kidneys play an important role in the development of DN. The present study investigated the effects of dapagliflozin (DAP) on renal autophagy and AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in vivo and in vitro.
We explored the effect of DAP in streptozotocin (STZ)-induced DN rats. The anti-DN effect of DAP was assessed by body weight, kidney weight/body weight ratio, blood and urine biochemical parameters, and pathological changes of kidney tissue. Number of autophagosomes in the kidney was investigated through Transmission electron microscopy. Besides, cell viability and apoptosis of DAP alone or combined with Compound C (CC, a selective AMPK inhibitor)-treated high glucose (HG)-induced HK-2 cells were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assays. Immunohistochemistry, Western blot, Enzyme-linked immunosorbent assay (ELISA), and immunofluorescence were employed to detect the expression levels of extracellular matrix (ECM) deposition, autophagy, apoptosis, and AMPK/mTOR pathway-associated targets in vivo and in vitro.
The results showed that DAP ameliorated the body weight and decreased kidney weight, fasting blood glucose, and serum/urine biochemical parameters of renal damage, as well as renal pathological changes. Moreover, DAP significantly ameliorated HG-induced cell apoptosis and ECM deposition in HK-2 cells. However, these favorable effects of DAP could be abolished by co-treatment with CC in HG-induced HK-2 cells. Mechanistically, DAP can enhance autophagy in DN including increased LC3-II/I ratio, Beclin-1, p-AMPK protein levels, and decreased p62 and p-mTOR protein expressions, as well as inhibited renal fibrosis and apoptosis.
In summary, DAP alleviated fibrosis, apoptosis, and autophagy in DN rats and HG-induced HK-2 cells by regulating the AMPK/mTOR pathway.
Ye YY
,Chen Y
,Yang J
,Wu J
,Wang P
... -
《-》
Alogliptin attenuates STZ-induced diabetic nephropathy in rats through the modulation of autophagy, apoptosis, and inflammation pathways: Targeting NF-κB and AMPK/mTOR pathway.
Diabetic nephropathy (DN) is a type of microvascular complication that arises from diabetes mellitus and leads to further health issues. Most importantly, the prevalence of DN is steadily rising in developed countries. This research explored the therapeutic benefits of alogliptin, a dipeptidyl peptidase IV (DPP-4) inhibitor, on streptozotocin (STZ)-induced DN and its underlying mechanisms in rats.
Ten rats were allocated to group 1, served as the normal group; and received saline. To develop diabetes, thirty rats were administered a single intraperitoneal dose of STZ (45 mg/kg). STZ-induced diabetic rats were randomly assigned to three groups: group 2 diabetic control; was given saline, groups 3 and 4 received alogliptin (10 mg/kg) and (20 mg/kg), respectively. The treatment began 8 weeks after diabetes onset and continued for four weeks. Histopathological alterations in the kidney were detected. Serum was collected to measure blood glucose levels (BGL), renal function, and lactate dehydrogenase (LDH). Tissue samples were collected to detect changes in oxidative stress (OS), inflammation, 5' adenosine monophosphate-activated protein kinase (AMPK), and the mammalian target of Rapamycin (mTOR) signaling pathways in addition to apoptotic and autophagy changes.
Alogliptin reduced STZ-induced histological changes in the kidney as well as OS, and inflammation. Alogliptin also ameliorated the AMPK/mTOR signaling pathways, enhanced autophagy, and reduced apoptosis.
These results demonstrate that alogliptin ameliorates inflammation and OS and consequently modulates the AMPK/mTOR axis along with targeting autophagy and apoptosis, leading to the alleviation of DN.
Selim SM
,El Fayoumi HM
,El-Sayed NM
,Mehanna ET
,Hazem RM
... -
《-》