Characterization of antibody responses to SARS-CoV-2 in convalescent COVID-19 patients.

来自 PUBMED

作者:

Liu CYu XGao CZhang LZhai HHu YLiu EWang QGao YWei DZhang DHan YZhang X

展开

摘要:

The coronavirus disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, little is known about the durability of the antibody response during COVID-19 convalescent phase. We investigated the prevalence of anti-SARS-CoV-2 specific antibodies including immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies and the dynamic changes in antibody levels in convalescent COVID-19 patients. A total of 159 blood samples were collected from 52 recovered COVID-19 patients up to six months after symptom onset for longitudinal serological tests. The positive rate of IgG and IgM antibodies was 92.3% and 90.4% in the first month after symptom onset, and the seropositivity of IgG antibody remained high at all follow-up time points, whereas the seropositivity of IgM antibody decreased to 22.73% by the sixth months after symptom onset. The level of IgG antibody was stable, the level of IgM antibody decreased slightly in the early convalescent phase and was detected in only five patients in the sixth month after symptom onset. The level of IgG antibody was higher in the severe and critical group than in the moderate group. The anti-SARS-CoV-2 specific antibodies have a long-term persistence in convalescent COVID-19 patients, whether they have long-term protection need to be further investigated.

收起

展开

DOI:

10.1002/jmv.26646

被引量:

29

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(554)

参考文献(0)

引证文献(29)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读