Side-by-Side Comparison of Three Fully Automated SARS-CoV-2 Antibody Assays with a Focus on Specificity.

来自 PUBMED

摘要:

In the context of the COVID-19 pandemic, numerous new serological test systems for the detection of anti-SARS-CoV-2 antibodies rapidly have become available. However, the clinical performance of many of these is still insufficiently described. Therefore, we compared 3 commercial CE-marked, SARS-CoV-2 antibody assays side by side. We included a total of 1154 specimens from pre-COVID-19 times and 65 samples from COVID-19 patients (≥14 days after symptom onset) to evaluate the test performance of SARS-CoV-2 serological assays by Abbott, Roche, and DiaSorin. All 3 assays presented with high specificities: 99.2% (98.6-99.7) for Abbott, 99.7% (99.2-100.0) for Roche, and 98.3% (97.3-98.9) for DiaSorin. In contrast to the manufacturers' specifications, sensitivities only ranged from 83.1% to 89.2%. Although the 3 methods were in good agreement (Cohen's Kappa 0.71-0.87), McNemar tests revealed significant differences between results obtained from Roche and DiaSorin. However, at low seroprevalences, the minor differences in specificity resulted in profound discrepancies of positive predictive values at 1% seroprevalence: 52.3% (36.2-67.9), 77.6% (52.8-91.5), and 32.6% (23.6-43.1) for Abbott, Roche, and DiaSorin, respectively. We found diagnostically relevant differences in specificities for the anti-SARS-CoV-2 antibody assays by Abbott, Roche, and DiaSorin that have a significant impact on the positive predictive values of these tests.

收起

展开

DOI:

10.1093/clinchem/hvaa198

被引量:

80

年份:

2020

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(174)

参考文献(0)

引证文献(80)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读