Multi-Platform Comparison of SARS-CoV-2 Serology Assays for the Detection of COVID-19.

来自 PUBMED

作者:

Suhandynata RTHoffman MAKelner MJMcLawhon RWReed SLFitzgerald RL

展开

摘要:

COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel beta-coronavirus that is responsible for the 2019 coronavirus pandemic. Acute infections should be diagnosed by polymerase chain reaction (PCR) based tests, but serology tests can demonstrate previous exposure to the virus. We compared the performance of the Diazyme, Roche, and Abbott SARS-CoV-2 serology assays using 179 negative participants to determine negative percentage agreement (NPA) and in 60 SARS-CoV-2 PCR-confirmed positive patients to determine positive percentage agreement (PPA) at 3 different time frames following a positive SARS-CoV-2 PCR result. At ≥15 days, the PPA (95% CI) was 100 (86.3-100)% for the Diazyme IgM/IgG panel, 96.0 (79.7-99.9)% for the Roche total Ig assay, and 100 (86.3-100)% for the Abbott IgG assay. The NPA (95% CI) was 98.3 (95.2-99.7)% for the Diazyme IgM/IgG panel, 99.4 (96.9-100)% for the Roche total Ig assay, and 98.9 (96.0-99.9)% for the Abbott IgG assay. When the Roche total Ig assay was combined with either the Diazyme IgM/IgG panel or the Abbott IgG assay, the positive predictive value was 100% while the negative predictive value remained greater than 99%. Our data demonstrates that the Diazyme, Roche, and Abbott SARS-CoV-2 serology assays have similar clinical performances. We demonstrated a low false-positive rate across all 3 platforms and observed that false positives observed on the Roche platform are unique compared to those observed on the Diazyme or Abbott assays. Using multiple platforms in tandem increases the PPVs, which is important when screening populations with low disease prevalence.

收起

展开

DOI:

10.1093/jalm/jfaa139

被引量:

14

年份:

2020

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(875)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读