Application of multivariate single-step SNP best linear unbiased predictor model and revised SNP list for genomic evaluation of dairy cattle in Australia.

来自 PUBMED

作者:

Konstantinov KVGoddard ME

展开

摘要:

The objectives of this study were (1) to evaluate the computational feasibility of the multitrait test-day single-step SNP-BLUP (ssSNP-BLUP) model using phenotypic records of genotyped and nongenotyped animals, and (2) to compare accuracies (coefficient of determination; R2) and bias of genomic estimated breeding values (GEBV) and de-regressed proofs as response variables in 3 Australian dairy cattle breeds (i.e., Holstein, Jersey, and Red breeds). Additive genomic random regression coefficients for milk, fat, protein yield and somatic cell score were predicted in the first, second, and third lactation. The predicted coefficients were used to derive 305-d GEBV and were compared with the traditional parent averages obtained from a BLUP model without genomic information. Cow fertility traits were evaluated from the 5-trait repeatability model (i.e., calving interval, days from calving to first service, pregnancy diagnosis, first service nonreturn rate, and lactation length). The de-regressed proofs were only for calving interval. Our results showed that ssSNP-BLUP using multitrait test-day model increased reliability and reduced bias of breeding values of young animals when compared with parent average from traditional BLUP in Australian Holsten, Jersey, and Red breeds. The use of a custom selection of approximately 46,000 SNP (custom XT SNP list) increased the reliability of GEBV compared with the results obtained using the commercial Illumina 50K chip (Illumina, San Diego, CA). The use of the second preconditioner substantially improved the convergence rate of the preconditioned conjugate gradient method, but further work is needed to improve the efficiency of the computation of the Kronecker matrix product by vector. Application of ssSNP-BLUP to multitrait random regression models is computationally feasible.

收起

展开

DOI:

10.3168/jds.2020-18242

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(245)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读