-
Application of multivariate single-step SNP best linear unbiased predictor model and revised SNP list for genomic evaluation of dairy cattle in Australia.
The objectives of this study were (1) to evaluate the computational feasibility of the multitrait test-day single-step SNP-BLUP (ssSNP-BLUP) model using phenotypic records of genotyped and nongenotyped animals, and (2) to compare accuracies (coefficient of determination; R2) and bias of genomic estimated breeding values (GEBV) and de-regressed proofs as response variables in 3 Australian dairy cattle breeds (i.e., Holstein, Jersey, and Red breeds). Additive genomic random regression coefficients for milk, fat, protein yield and somatic cell score were predicted in the first, second, and third lactation. The predicted coefficients were used to derive 305-d GEBV and were compared with the traditional parent averages obtained from a BLUP model without genomic information. Cow fertility traits were evaluated from the 5-trait repeatability model (i.e., calving interval, days from calving to first service, pregnancy diagnosis, first service nonreturn rate, and lactation length). The de-regressed proofs were only for calving interval. Our results showed that ssSNP-BLUP using multitrait test-day model increased reliability and reduced bias of breeding values of young animals when compared with parent average from traditional BLUP in Australian Holsten, Jersey, and Red breeds. The use of a custom selection of approximately 46,000 SNP (custom XT SNP list) increased the reliability of GEBV compared with the results obtained using the commercial Illumina 50K chip (Illumina, San Diego, CA). The use of the second preconditioner substantially improved the convergence rate of the preconditioned conjugate gradient method, but further work is needed to improve the efficiency of the computation of the Kronecker matrix product by vector. Application of ssSNP-BLUP to multitrait random regression models is computationally feasible.
Konstantinov KV
,Goddard ME
《-》
-
Application of single-step genomic evaluation using multiple-trait random regression test-day models in dairy cattle.
Test-day traits are important for genetic evaluation in dairy cattle and are better modeled by multiple-trait random regression models (RRM). The reliability and bias of genomic estimated breeding values (GEBV) predicted using multiple-trait RRM via single-step genomic best linear unbiased prediction (ssGBLUP) were investigated in the 3 major dairy cattle breeds in Canada (i.e., Ayrshire, Holstein, and Jersey). Individual additive genomic random regression coefficients for the test-day traits were predicted using 2 multiple-trait RRM: (1) one for milk, fat, and protein yields in the first, second, and third lactations, and (2) one for somatic cell score in the first, second, and third lactations. The predicted coefficients were used to derive GEBV for each lactation day and, subsequently, the daily GEBV were compared with traditional daily parent averages obtained by BLUP. To ensure compatibility between pedigree and genomic information for genotyped animals, different scaling factors for combining the inverse of genomic (G) and pedigree (A) relationship matrices were tested. In addition, the inclusion of only genotypes from animals with accurate breeding values (defined in preliminary analysis) was compared with the inclusion of all available genotypes in the analyzes. The ssGBLUP model led to considerably larger validation reliabilities than the BLUP model without genomic information. In general, scaling factors used to combine the G and A matrices had small influence on the validation reliabilities. However, a greater effect was observed in the inflation of GEBV. Less inflated GEBV were obtained by the ssGBLUP compared with the parent average from traditional BLUP when using optimal scaling factors to combine the G and A matrices. Similar results were observed when including either all available genotypes or only genotypes from animals with accurate breeding values. These findings indicate that ssGBLUP using multiple-trait RRM increases reliability and reduces bias of breeding values of young animals when compared with parent average from traditional BLUP in the Canadian Ayrshire, Holstein, and Jersey breeds.
Oliveira HR
,Lourenco DAL
,Masuda Y
,Misztal I
,Tsuruta S
,Jamrozik J
,Brito LF
,Silva FF
,Schenkel FS
... -
《-》
-
Accuracy of genomic predictions in Gyr (Bos indicus) dairy cattle.
Genomic selection may accelerate genetic progress in breeding programs of indicine breeds when compared with traditional selection methods. We present results of genomic predictions in Gyr (Bos indicus) dairy cattle of Brazil for milk yield (MY), fat yield (FY), protein yield (PY), and age at first calving using information from bulls and cows. Four different single nucleotide polymorphism (SNP) chips were studied. Additionally, the effect of the use of imputed data on genomic prediction accuracy was studied. A total of 474 bulls and 1,688 cows were genotyped with the Illumina BovineHD (HD; San Diego, CA) and BovineSNP50 (50K) chip, respectively. Genotypes of cows were imputed to HD using FImpute v2.2. After quality check of data, 496,606 markers remained. The HD markers present on the GeneSeek SGGP-20Ki (15,727; Lincoln, NE), 50K (22,152), and GeneSeek GGP-75Ki (65,018) were subset and used to assess the effect of lower SNP density on accuracy of prediction. Deregressed breeding values were used as pseudophenotypes for model training. Data were split into reference and validation to mimic a forward prediction scheme. The reference population consisted of animals whose birth year was ≤2004 and consisted of either only bulls (TR1) or a combination of bulls and dams (TR2), whereas the validation set consisted of younger bulls (born after 2004). Genomic BLUP was used to estimate genomic breeding values (GEBV) and reliability of GEBV (R) was based on the prediction error variance approach. Reliability of GEBV ranged from ∼0.46 (FY and PY) to 0.56 (MY) with TR1 and from 0.51 (PY) to 0.65 (MY) with TR2. When averaged across all traits, R were substantially higher (R of TR1 = 0.50 and TR2 = 0.57) compared with reliabilities of parent averages (0.35) computed from pedigree data and based on diagonals of the coefficient matrix (prediction error variance approach). Reliability was similar for all the 4 marker panels using either TR1 or TR2, except that imputed HD cow data set led to an inflation of reliability. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information. A reduced panel of ∼15K markers resulted in reliabilities similar to using HD markers. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information.
Boison SA
,Utsunomiya ATH
,Santos DJA
,Neves HHR
,Carvalheiro R
,Mészáros G
,Utsunomiya YT
,do Carmo AS
,Verneque RS
,Machado MA
,Panetto JCC
,Garcia JF
,Sölkner J
,da Silva MVGB
... -
《-》
-
Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.
Various models have been used for genomic prediction. Bayesian variable selection models often predict more accurate genomic breeding values than genomic BLUP (GBLUP), but GBLUP is generally preferred for routine genomic evaluations because of low computational demand. The objective of this study was to achieve the benefits of both models using results from Bayesian models and genome-wide association studies as weights on single nucleotide polymorphism (SNP) markers when constructing the genomic matrix (G-matrix) for genomic prediction. The data comprised 5,221 progeny-tested bulls from the Nordic Holstein population. The animals were genotyped using the Illumina Bovine SNP50 BeadChip (Illumina Inc., San Diego, CA). Weighting factors in this investigation were the posterior SNP variance, the square of the posterior SNP effect, and the corresponding minus base-10 logarithm of the marker association P-value [-log10(P)] of a t-test obtained from the analysis using a Bayesian mixture model with 4 normal distributions, the square of the estimated SNP effect, and the corresponding -log10(P) of a t-test obtained from the analysis using a classical genome-wide association study model (linear regression model). The weights were derived from the analysis based on data sets that were 0, 1, 3, or 5 yr before performing genomic prediction. In building a G-matrix, the weights were assigned either to each marker (single-marker weighting) or to each group of approximately 5 to 150 markers (group-marker weighting). The analysis was carried out for milk yield, fat yield, protein yield, fertility, and mastitis. Deregressed proofs (DRP) were used as response variables to predict genomic estimated breeding values (GEBV). Averaging over the 5 traits, the Bayesian model led to 2.0% higher reliability of GEBV than the GBLUP model with an original unweighted G-matrix. The superiority of using a GBLUP with weighted G-matrix over GBLUP with an original unweighted G-matrix was the largest when using a weighting factor of posterior variance, resulting in 1.7 percentage points higher reliability. The second best weighting factors were -log10 (P-value) of a t-test corresponding to the square of the posterior SNP effect from the Bayesian model and -log10 (P-value) of a t-test corresponding to the square of the estimated SNP effect from the linear regression model, followed by the square of estimated SNP effect and the square of the posterior SNP effect. In addition, group-marker weighting performed better than single-marker weighting in terms of reducing bias of GEBV, and also slightly increased prediction reliability. The differences between weighting factors and scenarios were larger in prediction bias than in prediction accuracy. Finally, weights derived from a data set having a lag up to 3 yr did not reduce reliability of GEBV. The results indicate that posterior SNP variance estimated from a Bayesian mixture model is a good alternative weighting factor, and common weights on group markers with a size of 30 markers is a good strategy when using markers of the 50,000-marker (50K) chip. In a population with gradually increasing reference data, the weights can be updated once every 3 yr.
Su G
,Christensen OF
,Janss L
,Lund MS
... -
《-》
-
Improving genetic evaluation using a multitrait single-step genomic model for ability to resume cycling after calving, measured by activity tags in Holstein cows.
The objective of this study was to evaluate the improvement of the accuracy of estimated breeding values for ability to recycle after calving by using information of genomic markers and phenotypic information of correlated traits. The traits in this study were the interval from calving to first insemination (CFI), based on artificial insemination data, and the interval from calving to first high activity (CFHA), recorded from activity tags, which could better measure ability to recycle after caving. The phenotypic data set included 1,472,313 records from 820,218 cows for CFI, and 36,504 records from 25,733 cows for CFHA. The genomic information was available for 3,159 progeny-tested sires, which were genotyped using Illumina Bovine SNP50 BeadChip (Illumina, San Diego, CA). Heritability estimates were 0.06 for the interval from calving to first insemination and 0.14 for the interval from calving to first high activity, and the genetic correlation between both traits was strong (0.87). Breeding values were obtained using 4 models: conventional single-trait BLUP; conventional multitrait BLUP with pedigree-based relationship matrix; single-trait single-step genomic BLUP; and multitrait single-step genomic BLUP model with joint relationship matrix combining pedigree and genomic information. The results showed that reliabilities of estimated breeding values (EBV) from single-step genomic BLUP models were about 40% higher than those from conventional BLUP models for both traits. Furthermore, using a multitrait model doubled the reliability of breeding values for CFHA, whereas no gain was observed for CFI. The best model was the multitrait single-step genomic BLUP, which resulted in a reliability of EBV 0.19 for CFHA and 0.14 for CFI. The results indicate that even though a relatively small number of records for CFHA were available, with genomic information and using multitrait model, the reliability of EBV for CFHA is acceptable. Thus, it is feasible to include CFHA in Nordic Holstein breeding evaluations to improve fertility performance.
Ismael A
,Løvendahl P
,Fogh A
,Lund MS
,Su G
... -
《-》