-
Accuracy of genomic predictions in Gyr (Bos indicus) dairy cattle.
Genomic selection may accelerate genetic progress in breeding programs of indicine breeds when compared with traditional selection methods. We present results of genomic predictions in Gyr (Bos indicus) dairy cattle of Brazil for milk yield (MY), fat yield (FY), protein yield (PY), and age at first calving using information from bulls and cows. Four different single nucleotide polymorphism (SNP) chips were studied. Additionally, the effect of the use of imputed data on genomic prediction accuracy was studied. A total of 474 bulls and 1,688 cows were genotyped with the Illumina BovineHD (HD; San Diego, CA) and BovineSNP50 (50K) chip, respectively. Genotypes of cows were imputed to HD using FImpute v2.2. After quality check of data, 496,606 markers remained. The HD markers present on the GeneSeek SGGP-20Ki (15,727; Lincoln, NE), 50K (22,152), and GeneSeek GGP-75Ki (65,018) were subset and used to assess the effect of lower SNP density on accuracy of prediction. Deregressed breeding values were used as pseudophenotypes for model training. Data were split into reference and validation to mimic a forward prediction scheme. The reference population consisted of animals whose birth year was ≤2004 and consisted of either only bulls (TR1) or a combination of bulls and dams (TR2), whereas the validation set consisted of younger bulls (born after 2004). Genomic BLUP was used to estimate genomic breeding values (GEBV) and reliability of GEBV (R) was based on the prediction error variance approach. Reliability of GEBV ranged from ∼0.46 (FY and PY) to 0.56 (MY) with TR1 and from 0.51 (PY) to 0.65 (MY) with TR2. When averaged across all traits, R were substantially higher (R of TR1 = 0.50 and TR2 = 0.57) compared with reliabilities of parent averages (0.35) computed from pedigree data and based on diagonals of the coefficient matrix (prediction error variance approach). Reliability was similar for all the 4 marker panels using either TR1 or TR2, except that imputed HD cow data set led to an inflation of reliability. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information. A reduced panel of ∼15K markers resulted in reliabilities similar to using HD markers. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information.
Boison SA
,Utsunomiya ATH
,Santos DJA
,Neves HHR
,Carvalheiro R
,Mészáros G
,Utsunomiya YT
,do Carmo AS
,Verneque RS
,Machado MA
,Panetto JCC
,Garcia JF
,Sölkner J
,da Silva MVGB
... -
《-》
-
Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy cattle: Comparison of commercially available SNP chips.
Genotype imputation is widely used as a cost-effective strategy in genomic evaluation of cattle. Key determinants of imputation accuracies, such as linkage disequilibrium patterns, marker densities, and ascertainment bias, differ between Bos indicus and Bos taurus breeds. Consequently, there is a need to investigate effectiveness of genotype imputation in indicine breeds. Thus, the objective of the study was to investigate strategies and factors affecting the accuracy of genotype imputation in Gyr (Bos indicus) dairy cattle. Four imputation scenarios were studied using 471 sires and 1,644 dams genotyped on Illumina BovineHD (HD-777K; San Diego, CA) and BovineSNP50 (50K) chips, respectively. Scenarios were based on which reference high-density single nucleotide polymorphism (SNP) panel (HDP) should be adopted [HD-777K, 50K, and GeneSeek GGP-75Ki (Lincoln, NE)]. Depending on the scenario, validation animals had their genotypes masked for one of the lower-density panels: Illumina (3K, 7K, and 50K) and GeneSeek (SGGP-20Ki and GGP-75Ki). We randomly selected 171 sires as reference and 300 as validation for all the scenarios. Additionally, all sires were used as reference and the 1,644 dams were imputed for validation. Genotypes of 98 individuals with 4 and more offspring were completely masked and imputed. Imputation algorithms FImpute and Beagle v3.3 and v4 were used. Imputation accuracies were measured using the correlation and allelic correct rate. FImpute resulted in highest accuracies, whereas Beagle 3.3 gave the least-accurate imputations. Accuracies evaluated as correlation (allelic correct rate) ranged from 0.910 (0.942) to 0.961 (0.974) using 50K as HDP and with 3K (7K) as low-density panels. With GGP-75Ki as HDP, accuracies were moderate for 3K, 7K, and 50K, but high for SGGP-20Ki. The use of HD-777K as HDP resulted in accuracies of 0.888 (3K), 0.941 (7K), 0.980 (SGGP-20Ki), 0.982 (50K), and 0.993 (GGP-75Ki). Ungenotyped individuals were imputed with an average accuracy of 0.970. The average top 5 kinship coefficients between reference and imputed individuals was a strong predictor of imputation accuracy. FImpute was faster and used less memory than Beagle v4. Beagle v4 outperformed Beagle v3.3 in accuracy and speed of computation. A genotyping strategy that uses the HD-777K SNP chip as a reference panel and SGGP-20Ki as the lower-density SNP panel should be adopted as accuracy was high and similar to that of the 50K. However, the effect of using imputed HD-777K genotypes from the SGGP-20Ki on genomic evaluation is yet to be studied.
Boison SA
,Santos DJ
,Utsunomiya AH
,Carvalheiro R
,Neves HH
,O'Brien AM
,Garcia JF
,Sölkner J
,da Silva MV
... -
《-》
-
Value of sharing cow reference population between countries on reliability of genomic prediction for milk yield traits.
Increasing the reliability of genomic prediction (GP) of economic traits in the pasture-based dairy production systems of New Zealand (NZ) and Australia (AU) is important to both countries. This study assessed if sharing cow phenotype and genotype data of NZ and AU improves the reliability of GP for NZ bulls. Data from approximately 32,000 NZ genotyped cows and their contemporaries were included in the May 2018 routine genetic evaluation of the Australian Dairy cattle in an attempt to provide consistent phenotypes for both countries. After the genetic evaluation, deregressed proofs of cows were calculated for milk yield traits. The April 2018 multiple across-country evaluation of Interbull was also used to calculate deregressed proofs for bulls on the NZ scale. Approximately 1,178 Jersey (Jer) and 6,422 Holstein (Hol) bulls had genotype and phenotype data. In addition to NZ cows, phenotype data of close to 60,000 genotyped Australian (AU) cows from the same genetic evaluation run as NZ cows were used. All AU and NZ females were genotyped using low-density SNP chips (<10K SNP) and were imputed first to 50K and then to ∼600K (referred to as high density; HD). We used up to 98,000 animals in the reference populations, both by expanding the NZ reference set (cow, bull, single breed to multi-breed set) and by adding AU cows. Reliabilities of GP were calculated for 508 Jer and 1,251 Hol bulls whose sires are not included in the reference set (RS) to ensure that real differences are not masked by close relationships. The GP was tested using 50K or high-density SNP chip using genomic BLUP in bivariate (considering country as a trait) or single trait models. The RS that gave the highest reliability for each breed were also tested using a hybrid GP method that combines expectation maximization with Bayes R. The addition of the AU cows to an NZ RS that included either NZ cows only, or cows and bulls, improved the reliability of GP for both NZ Hol and Jer validation bulls for all traits. Using single breed reference populations also increased reliability when NZ crossbred cows were added to reference populations that included only purebred NZ bulls and cows and AU cows. The full multi-breed RS (all NZ cows and bulls and AU cows) provided similar reliabilities in NZ Hol bulls, when compared with the single breed reference with crossbred NZ cows. For Jer validation bulls, the RS that included Jer cows and bulls and crossbred cows from NZ and Jer cows from AU was marginally better than the all-breed, all-country RS. In terms of reliability, the advantage of the HD SNP chip was small but captured more of the genomic variance than the 50K, particularly for Hol. The expectation maximization Bayes R GP method was slightly (up to 3 percentage points) better than genomic BLUP. We conclude that GP of milk production traits in NZ bulls improves by up to 7 percentage points in reliability by expanding the NZ reference population to include AU cows.
Haile-Mariam M
,MacLeod IM
,Bolormaa S
,Schrooten C
,O'Connor E
,de Jong G
,Daetwyler HD
,Pryce JE
... -
《-》
-
Assets of imputation to ultra-high density for productive and functional traits.
The aim of this study was to evaluate different-density genotyping panels for genotype imputation and genomic prediction. Genotypes from customized Golden Gate Bovine3K BeadChip [LD3K; low-density (LD) 3,000-marker (3K); Illumina Inc., San Diego, CA] and BovineLD BeadChip [LD6K; 6,000-marker (6K); Illumina Inc.] panels were imputed to the BovineSNP50v2 BeadChip [50K; 50,000-marker; Illumina Inc.]. In addition, LD3K, LD6K, and 50K genotypes were imputed to a BovineHD BeadChip [HD; high-density 800,000-marker (800K) panel], and with predictive ability evaluated and compared subsequently. Comparisons of prediction accuracy were carried out using Random boosting and genomic BLUP. Four traits under selection in the Spanish Holstein population were used: milk yield, fat percentage (FP), somatic cell count, and days open (DO). Training sets at 50K density for imputation and prediction included 1,632 genotypes. Testing sets for imputation from LD to 50K contained 834 genotypes and testing sets for genomic evaluation included 383 bulls. The reference population genotyped at HD included 192 bulls. Imputation using BEAGLE software (http://faculty.washington.edu/browning/beagle/beagle.html) was effective for reconstruction of dense 50K and HD genotypes, even when a small reference population was used, with 98.3% of SNP correctly imputed. Random boosting outperformed genomic BLUP in terms of prediction reliability, mean squared error, and selection effectiveness of top animals in the case of FP. For other traits, however, no clear differences existed between methods. No differences were found between imputed LD and 50K genotypes, whereas evaluation of genotypes imputed to HD was on average across data set, method, and trait, 4% more accurate than 50K prediction, and showed smaller (2%) mean squared error of predictions. Similar bias in regression coefficients was found across data sets but regressions were 0.32 units closer to unity for DO when genotypes were imputed to HD density. Imputation to HD genotypes might produce higher stability in the genomic proofs of young candidates. Regarding selection effectiveness of top animals, more (2%) top bulls were classified correctly with imputed LD6K genotypes than with LD3K. When the original 50K genotypes were used, correct classification of top bulls increased by 1%, and when those genotypes were imputed to HD, 3% more top bulls were detected. Selection effectiveness could be slightly enhanced for certain traits such as FP, somatic cell count, or DO when genotypes are imputed to HD. Genetic evaluation units may consider a trait-dependent strategy in terms of method and genotype density for use in the genome-enhanced evaluations.
Jiménez-Montero JA
,Gianola D
,Weigel K
,Alenda R
,González-Recio O
... -
《-》
-
Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population.
Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds.
Hozé C
,Fritz S
,Phocas F
,Boichard D
,Ducrocq V
,Croiseau P
... -
《-》