Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma.
摘要:
Gliomas are infiltrative neoplasms with a highly invasive nature. Due to its distinct genomic, genetic and epigenetic features, the immune prognostic signature (IPS) and immune microenvironment of glioblastoma (GBM) merit further research. We aimed to explore prognosis-related immune genes and develop an IPS model for predicting prognosis in GBM. RNA-sequencing data, as well as clinical information, from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) public cohorts were analyzed. To develop the IPS, least absolute shrinkage and selection operator (LASSO) Cox analysis was performed for immune-related genes that were differentially expressed between GBM and normal tissues. Then, interaction effects of the IPS on the immune microenvironment were systematically analyzed; the precise prognostic model was developed based on the IPS and clinical data and was then further validated. A total of 21 immune prognostic genes were identified based on GBM microenvironment status. An 8-gene IPS was established, and the GBM patients were effectively stratified into low- and high-risk groups in the TCGA cohort as a training set. Univariate and multivariate Cox analyses revealed that IPS was an independent prognostic factor, and the prognostic performance of individual IPS genes was systematically illustrated. In addition, a comprehensive and novel nomogram model was initially established to estimate overall survival in TCGA-GBM patients, and high-risk patients had higher levels of dendritic cell and neutrophil infiltration. Furthermore, the nomogram model was developed and validated in the CGGA validation set. The low-risk IPS was linked to a stronger response to anti-PD-L1 immunotherapy and clinical advantages in the IMvigor210 cohort. This novel IPS with promising biomarkers classifies GBM patients into subgroups with distinct clinical outcomes and immunophenotypes. Our findings and this resource may help to characterize the immune microenvironment, inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
收起
展开
DOI:
10.1002/jcp.29878
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(1985)
参考文献(0)
引证文献(15)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无