Establishment and validation of an immune-based prognostic score model in glioblastoma.

来自 PUBMED

作者:

Qin ZZhang XChen ZLiu N

展开

摘要:

Immune escape is one of the landmark features of glioblastoma (GBM). Immunotherapy is undoubtedly a revolution in the field of tumor treatment, especially the application of immune checkpoint inhibitors and CAR-T cells, which have achieved amazing results in fighting against cancer. This study aimed to establish a TP53-related immune-based score model to improve the prognostic of GBM by investigating the gene mutations and the immune landscape of GBM. Data were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed genes (DEGs) analysis between the TP53 mutated (TP53MUT) and wild-type (TP53WT) GBM patients was conducted. The CIBERSORT algorithm was applied to evaluate the proportion of immune cell types and RNA sequencing (RNA-seq) data from the TCGA and CGGA were used as discovery and validation cohorts, respectively, to build and validate an immune-related prognostic model (IPM). Genes in the IPM model were first screened by univariate Cox analysis, then filtered by the least absolute shrinkage and selection operator (LASSO) Cox regression method to eliminate collinearity among DEGs. A nomogram was finally established and evaluated by combining both the IPM and other clinical factors. PTEN was the top most mutated gene in GBM patients (118/393), followed by TP53 (116/393). 332 immune-related genes were identified and the immune response in the TP53WT group was remarkably greater than in the TP53MUT group. The final IPM model composed three immune-related genes: IPM risk score = (0.392 × S100A8 expression) + (0.174 × CXCL1 expression) + (0.368 × IGLL5 expression), significantly correlated with the overall survival (OS) of GBM in the stratified TP53 status subgroups and was an independent prognostic variate for GBM. By integrating the IPM and clinical characteristics, a nomogram was generated to facilitate clinical utilization, with the results suggesting that it has better predictive performance for GBM prognosis than the IPM. The IPM model can identify patients at high-risk and can be combined with other clinical factors to estimate the OS of GBM patients, demonstrating that it is a promising biomarker to optimize the prognosis of GBM.

收起

展开

DOI:

10.1016/j.intimp.2020.106636

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(602)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读