-
Overexpression of FYN suppresses the epithelial-to-mesenchymal transition through down-regulating PI3K/AKT pathway in lung adenocarcinoma.
Tyrosine-protein kinase Fyn (FYN) plays a crucial role in Src family, which participates in the signal transduction of brain nerves and the development and activation of T lymphocytes in physiological conditions. We probed into the roles and mechanisms of FYN in lung adenocarcinoma (LUAD).
Cell activity, apoptosis, invasion, and migration were detected by CCK-8, FCM, transwell, and wound-healing assays, respectively. The angiogenesis capacity was evaluated by in vitro angiogenesis test. Relative mRNA and protein expressions were determined by qRT-PCR, Western blot, and immunohistochemistry assays, respectively. Insulin-like growth factors-I (IGF-I) was used as an agonist of PI3K/AKT pathway.
We demonstrated that FYN expression correlated with LUAD prognosis and was down-regulated in LUAD tissues and LUAD cells. Overexpression of FYN suppressed the cell viability, together with invasion and migration abilities of A549 cells. FYN overexpression accelerated the cell apoptosis and reduced the angiogenesis capacity of A549 cells. Overexpression of FYN suppressed E-cadherin, Vimentin, Snail, and PI3K/AKT expressions in A549 cells. High expression level of FYN reduced the migration and invasion capacities of A549 cells via down-regulating the PI3K/AKT pathway.
Collectively, our findings reveal that overexpression of FYN inhibits the epithelial-to-mesenchymal transition (EMT) through down-regulating the PI3K/AKT pathway in A549 cells.
Xue F
,Jia Y
,Zhao J
《-》
-
MicroRNA-218 regulates the epithelial-to-mesenchymal transition and the PI3K/Akt signaling pathway to suppress lung adenocarcinoma progression by directly targeting BMI-1.
Xu L
,Sun HB
,Xu ZN
,Han XL
,Yin YY
,Zheng Y
,Zhao Y
,Wang ZX
... -
《-》
-
TM6SF1 suppresses the progression of lung adenocarcinoma and M2 macrophage polarization by inactivating the PI3K/AKT/mtor pathway.
Transmembrane 6 superfamily 1 (TM6SF1) is lowly expressed in lung adenocarcinoma (LUAD), but the function and mechanisms of TM6SF1 remain unclear. Thus, we attempt to explore the function of TM6SF1 and its underlying mechanisms in LUAD. qRT-PCR was used for detecting TM6SF1 mRNA expression. Immunohistochemistry staining was used for detecting the expression of MMP-2, TM6SF1, Ki67, MMP-9, and CD163 proteins. E-cadherin, p-PI3K, Vimentin, AKT, N-cadherin, PI3K, p-AKT, mTOR, p-mTOR, and marker proteins of M2 macrophages were evaluated using Western blot. CD206 protein expression was examined via immunofluorescence. The IL-10 concentration was measured via enzyme-linked immunosorbent assay (ELISA). Using CCK-8, colony formation and transwell assays, cell proliferation, migration, and invasion were assessed. A549 cells were injected into the mice's flank for establishing a mouse tumor model and into the tail vein for establishing the lung metastasis model. HE staining was performed to detect pathological changes in lung tissues. Decreased TM6SF1 expression was found in LUAD tissues and cells. TM6SF1 overexpression inhibited cell viability, proliferation, invasion, migration, EMT, and polarization of M2 macrophages in LUAD cells, along with tumor growth and metastasis in xenograft mice. Bioinformatics analysis demonstrated that TM6SF1 was correlated with the tumor microenvironment. TM6SF1 overexpression reduced expression levels of p-mTOR, p-PI3K, p-AKT, mTOR, and AKT. TM6SF1-caused inhibition of proliferation, migration, invasion and EMT, as M2 macrophage polarization was reversed by the PI3K activator in LUAD cells. TM6SF1 inactivated the PI3K/AKT/mTOR pathway to suppress LUAD malignancy and polarization of M2 macrophages, providing insight for developing new LUAD treatments.
Huang S
,Zhao H
,Lou X
,Chen D
,Shi C
,Ren Z
... -
《-》
-
LncRNA LINC01305 silencing inhibits cell epithelial-mesenchymal transition in cervical cancer by inhibiting TNXB-mediated PI3K/Akt signalling pathway.
Cervical cancer (CC) remains one of the leading malignancies afflicting females worldwide, with its aetiology associated with long-term papillomavirus infection. Recent studies have shifted their focus and research attention to the relationship between long non-coding RNAs (lncRNAs) and CC therapeutic. Thus, the aim of the current study was to investigate the underlying mechanism of lncRNA LINC01305 on the cell invasion, migration and epithelial-mesenchymal transition (EMT) of CC cells via modulation of the PI3K/Akt signalling pathway by targeting tenascin-X B (TNXB). The expressions of LINC01305, TNXB, MMP2, MMP9, E-cadherin, vimentin, PI3K, Akt, p-PI3K, p-Akt and TNXB were detected in this study. After which, the cell invasion and migration abilities of the CC cells were determined respectively. Bioinformatics and the application of a dual luciferase reporter gene assay provided verification indicating that TNXB is the target gene of lncRNA LINC01305. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis methods revealed that the expressions of MMP2, MMP9, vimentin, PI3K, Akt, p-PI3K and p-Akt were decreased following the down-regulation of LncRNA LINC01305 or overexpression of TNXB. LncRNA LINC01305 silencing or TNXB overexpression was noted to decrease the migration and invasion of SiHa cells. Taken together, the key findings of the current study present evidence suggesting that lncRNA LINC01305 silencing suppresses EMT, invasion and migration via repressing the PI3K/Akt signalling pathway by means of targeting TNXB in CC cells, which ultimately provides novel insight and identification of potential therapeutic targets for CC.
Yan SP
,Chu DX
,Qiu HF
,Xie Y
,Wang CF
,Zhang JY
,Li WC
,Guo RX
... -
《-》
-
Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC).
NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis.
The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis.
These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC.
Zhou Y
,Li S
,Li J
,Wang D
,Li Q
... -
《-》