Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC).
NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis.
The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis.
These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC.
Zhou Y
,Li S
,Li J
,Wang D
,Li Q
... -
《-》
Overexpression of FYN suppresses the epithelial-to-mesenchymal transition through down-regulating PI3K/AKT pathway in lung adenocarcinoma.
Tyrosine-protein kinase Fyn (FYN) plays a crucial role in Src family, which participates in the signal transduction of brain nerves and the development and activation of T lymphocytes in physiological conditions. We probed into the roles and mechanisms of FYN in lung adenocarcinoma (LUAD).
Cell activity, apoptosis, invasion, and migration were detected by CCK-8, FCM, transwell, and wound-healing assays, respectively. The angiogenesis capacity was evaluated by in vitro angiogenesis test. Relative mRNA and protein expressions were determined by qRT-PCR, Western blot, and immunohistochemistry assays, respectively. Insulin-like growth factors-I (IGF-I) was used as an agonist of PI3K/AKT pathway.
We demonstrated that FYN expression correlated with LUAD prognosis and was down-regulated in LUAD tissues and LUAD cells. Overexpression of FYN suppressed the cell viability, together with invasion and migration abilities of A549 cells. FYN overexpression accelerated the cell apoptosis and reduced the angiogenesis capacity of A549 cells. Overexpression of FYN suppressed E-cadherin, Vimentin, Snail, and PI3K/AKT expressions in A549 cells. High expression level of FYN reduced the migration and invasion capacities of A549 cells via down-regulating the PI3K/AKT pathway.
Collectively, our findings reveal that overexpression of FYN inhibits the epithelial-to-mesenchymal transition (EMT) through down-regulating the PI3K/AKT pathway in A549 cells.
Xue F
,Jia Y
,Zhao J
《-》