Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study.
Non-pharmaceutical interventions have been implemented to reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the UK. Projecting the size of an unmitigated epidemic and the potential effect of different control measures has been crucial to support evidence-based policy making during the early stages of the epidemic. This study assesses the potential impact of different control measures for mitigating the burden of COVID-19 in the UK.
We used a stochastic age-structured transmission model to explore a range of intervention scenarios, tracking 66·4 million people aggregated to 186 county-level administrative units in England, Wales, Scotland, and Northern Ireland. The four base interventions modelled were school closures, physical distancing, shielding of people aged 70 years or older, and self-isolation of symptomatic cases. We also modelled the combination of these interventions, as well as a programme of intensive interventions with phased lockdown-type restrictions that substantially limited contacts outside of the home for repeated periods. We simulated different triggers for the introduction of interventions, and estimated the impact of varying adherence to interventions across counties. For each scenario, we projected estimated new cases over time, patients requiring inpatient and critical care (ie, admission to the intensive care units [ICU]) treatment, and deaths, and compared the effect of each intervention on the basic reproduction number, R0.
We projected a median unmitigated burden of 23 million (95% prediction interval 13-30) clinical cases and 350 000 deaths (170 000-480 000) due to COVID-19 in the UK by December, 2021. We found that the four base interventions were each likely to decrease R0, but not sufficiently to prevent ICU demand from exceeding health service capacity. The combined intervention was more effective at reducing R0, but only lockdown periods were sufficient to bring R0 near or below 1; the most stringent lockdown scenario resulted in a projected 120 000 cases (46 000-700 000) and 50 000 deaths (9300-160 000). Intensive interventions with lockdown periods would need to be in place for a large proportion of the coming year to prevent health-care demand exceeding availability.
The characteristics of SARS-CoV-2 mean that extreme measures are probably required to bring the epidemic under control and to prevent very large numbers of deaths and an excess of demand on hospital beds, especially those in ICUs.
Medical Research Council.
Davies NG
,Kucharski AJ
,Eggo RM
,Gimma A
,Edmunds WJ
,Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group
... -
《The Lancet Regional Health》
Association of tiered restrictions and a second lockdown with COVID-19 deaths and hospital admissions in England: a modelling study.
A second wave of COVID-19 cases in autumn, 2020, in England led to localised, tiered restrictions (so-called alert levels) and, subsequently, a second national lockdown. We examined the impact of these tiered restrictions, and alternatives for lockdown stringency, timing, and duration, on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and hospital admissions and deaths from COVID-19.
We fit an age-structured mathematical model of SARS-CoV-2 transmission to data on hospital admissions and hospital bed occupancy (ISARIC4C/COVID-19 Clinical Information Network, National Health Service [NHS] England), seroprevalence (Office for National Statistics, UK Biobank, REACT-2 study), virology (REACT-1 study), and deaths (Public Health England) across the seven NHS England regions from March 1, to Oct 13, 2020. We analysed mobility (Google Community Mobility) and social contact (CoMix study) data to estimate the effect of tiered restrictions implemented in England, and of lockdowns implemented in Northern Ireland and Wales, in October, 2020, and projected epidemiological scenarios for England up to March 31, 2021.
We estimated a reduction in the effective reproduction number (Rt) of 2% (95% credible interval [CrI] 0-4) for tier 2, 10% (6-14) for tier 3, 35% (30-41) for a Northern Ireland-stringency lockdown with schools closed, and 44% (37-49) for a Wales-stringency lockdown with schools closed. From Oct 1, 2020, to March 31, 2021, a projected COVID-19 epidemic without tiered restrictions or lockdown results in 280 000 (95% projection interval 274 000-287 000) hospital admissions and 58 500 (55 800-61 100) deaths. Tiered restrictions would reduce hospital admissions to 238 000 (231 000-245 000) and deaths to 48 600 (46 400-50 700). From Nov 5, 2020, a 4-week Wales-type lockdown with schools remaining open-similar to the lockdown measures announced in England in November, 2020-was projected to further reduce hospital admissions to 186 000 (179 000-193 000) and deaths to 36 800 (34 900-38 800). Closing schools was projected to further reduce hospital admissions to 157 000 (152 000-163 000) and deaths to 30 300 (29 000-31 900). A projected lockdown of greater than 4 weeks would reduce deaths but would bring diminishing returns in reducing peak pressure on hospital services. An earlier lockdown would have reduced deaths and hospitalisations in the short term, but would lead to a faster resurgence in cases after January, 2021. In a post-hoc analysis, we estimated that the second lockdown in England (Nov 5-Dec 2) reduced Rt by 22% (95% CrI 15-29), rather than the 32% (25-39) reduction estimated for a Wales-stringency lockdown with schools open.
Lockdown measures outperform less stringent restrictions in reducing cumulative deaths. We projected that the lockdown policy announced to commence in England on Nov 5, with a similar stringency to the lockdown adopted in Wales, would reduce pressure on the health service and would be well timed to suppress deaths over the winter period, while allowing schools to remain open. Following completion of the analysis, we analysed new data from November, 2020, and found that despite similarities in policy, the second lockdown in England had a smaller impact on behaviour than did the second lockdown in Wales, resulting in more deaths and hospitalisations than we originally projected when focusing on a Wales-stringency scenario for the lockdown.
Horizon 2020, UK Medical Research Council, and the National Institute for Health Research.
Davies NG
,Barnard RC
,Jarvis CI
,Russell TW
,Semple MG
,Jit M
,Edmunds WJ
,Centre for Mathematical Modelling of Infectious Diseases COVID-19 Working Group
,ISARIC4C investigators
... -
《-》
The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study.
In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of the world.
To examine how changes in population mixing have affected outbreak progression in Wuhan, we used synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the beginning of March or April).
Our projections show that physical distancing measures were most effective if the staggered return to work was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66-97) and 24% (13-90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the duration of infectiousness and the role school children have in the epidemic.
Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, including large uncertainties around estimates of R0 and the duration of infectiousness.
Bill & Melinda Gates Foundation, National Institute for Health Research, Wellcome Trust, and Health Data Research UK.
Prem K
,Liu Y
,Russell TW
,Kucharski AJ
,Eggo RM
,Davies N
,Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group
,Jit M
,Klepac P
... -
《The Lancet Regional Health》