-
Genomic analyses for predicted milk fatty acid composition throughout lactation in North American Holstein cattle.
Milk fat composition has important implications in the nutritional and processing properties of milk. Additionally, milk fat composition is associated with cow physiological and health status. The main objectives of this study were (1) to estimate genetic parameters for 5 milk fatty acid (FA) groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted from milk infrared spectra using a large data set; (2) to predict genomic breeding values using a longitudinal single-step genomic BLUP approach; and (3) to conduct a single-step GWAS aiming to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA, and consequently, to understand the underlying biology of these traits. We used 629,769 test-day records of 201,465 first-parity Holstein cows from 6,105 herds. A total of 8,865 genotyped (Illumina BovineSNP50K BeadChip, Illumina, San Diego, CA) animals were considered for the genomic analyses. The average daily heritability ranged from 0.24 (unsaturated FA) to 0.47 (medium-chain and saturated FA). The reliability of the genomic breeding values ranged from 0.56 (long-chain fatty acid) to 0.74 (medium-chain fatty acid) when using the default τ and ω scaling parameters, whereas it ranged from 0.58 (long-chain fatty acid) to 0.73 (short-chain fatty acid) when using the optimal τ and ω values (i.e., τ = 1.5 and ω = 0.6), as defined in a previous study in the same population. Relevant chromosomal regions were identified in Bos taurus autosomes 5 and 14. The proportion of the variance explained by 20 adjacent single nucleotide polymorphisms ranged from 0.71% (saturated FA) to 15.12% (long-chain FA). Important candidate genes and pathways were also identified. In summary, our results contribute to a better understanding of the genetic architecture of predicted milk FA in dairy cattle and reinforce the relevance of using genomic information for genetic analyses of these traits.
Freitas PHF
,Oliveira HR
,Silva FF
,Fleming A
,Miglior F
,Schenkel FS
,Brito LF
... -
《-》
-
Short communication: Time-dependent genetic parameters and single-step genome-wide association analyses for predicted milk fatty acid composition in Ayrshire and Jersey dairy cattle.
Milk fat content and fatty acid (FA) composition have great economic value to the dairy industry as they are directly associated with taste and chemical-physical characteristics of milk and dairy products. In addition, consumers' choices are not only based on the nutritional aspects of food, but also on products known to promote better health. Milk FA composition is also related to the metabolic status and physiological stages of cows and thus can also be used as indicator for other novel traits of interest (e.g., metabolic diseases and methane yield). Genetic selection is a promising alternative to manipulate milk FA composition. In this study, we aimed to (1) estimate time-dependent genetic parameters for 5 milk FA groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted based on milk mid-infrared spectroscopy, for Canadian Ayrshire and Jersey breeds, and (2) conduct a time-dependent, single-step genome-wide association study to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA. We analyzed 31,709 test-day records of 9,648 Ayrshire cows from 268 herds, and 34,341 records of 11,479 Jersey cows from 883 herds. The genomic database contained a total of 2,330 Ayrshire and 1,019 Jersey animals. The average daily heritability ranged from 0.18 (long-chain FA) to 0.34 (medium-chain FA) in Ayrshire, and from 0.25 (long-chain and unsaturated FA) to 0.52 (medium-chain and saturated FA) in Jersey. Important genomic regions were identified in Bos taurus autosomes BTA3, BTA5, BTA12, BTA13, BTA14, BTA16, BTA18, BTA20, and BTA21. The proportion of the variance explained by 20 adjacent SNP ranged from 0.71% (saturated FA) to 1.11% (long-chain FA) in Ayrshire, and from 0.70% (unsaturated FA) to 3.09% (medium-chain FA) in Jersey cattle. Important candidate genes and pathways were also identified, such as the PTK2 and TRAPPC9 genes, associated with milk fat percentage, and HMGCS, FGF10, and C6 genes, associated with fertility traits and immune response. Our findings on the genetic parameters and candidate genes contribute to a better understanding of the genetic architecture of milk FA composition in Ayrshire and Jersey dairy cattle.
Freitas PHF
,Oliveira HR
,Silva FF
,Fleming A
,Schenkel FS
,Miglior F
,Brito LF
... -
《-》
-
Single-step genomic best linear unbiased predictor genetic parameter estimations and genome-wide associations for milk fatty acid profiles, interval from calving to first insemination, and ketosis in Holstein cattle.
Milk fatty acids (FA) have been suggested as biomarkers for early-lactation metabolic diseases and for female fertility status. The aim of the present study was to infer associations between FA, the metabolic disorder ketosis (KET), and the interval from calving to first insemination (ICF) genetically and genomically. In this regard, we focused on a single-step genomic BLUP approach, allowing consideration of genotyped and ungenotyped cows simultaneously. The phenotypic data set considered 38,375 first-lactation Holstein cows, kept in 45 large-scale co-operator herds from 2 federal states in Germany. The calving years for these cows were from 2014 to 2017. Concentrations in milk from the first official milk recording test-day for saturated, unsaturated (UFA), monounsaturated (MUFA), polyunsaturated, palmitic, and stearic (C18:0) FA were determined via Fourier-transform infrared spectroscopy. Ketosis was defined as a binary trait according to a veterinarian diagnosis key, considering diagnoses within a 6-wk interval after calving. A subset of 9,786 cows was genotyped for 40,989 SNP markers. Variance components and heritabilities for all Gaussian distributed FA and for ICF, and for binary KET were estimated by applying single-step genomic BLUP single-trait linear and threshold models, respectively. Genetic correlations were estimated in series of bivariate runs. Genomic breeding values for the single-step genomic BLUP estimations were dependent traits in single-step GWAS. Heritabilities for FA were moderate in the range from 0.09 to 0.20 (standard error = 0.02-0.03), but quite small for ICF (0.08, standard error = 0.01) and for KET (0.05 on the underlying liability scale, posterior standard deviation = 0.02). Genetic correlations between KET and UFA, MUFA, and C18:0 were large (0.74 to 0.85, posterior standard deviation = 0.14-0.19), and low positive between KET and ICF (0.17, posterior standard deviation = 0.22). Genetic correlations between UFA, MUFA, and C18:0 with ICF ranged from 0.34 to 0.46 (standard error = 0.12). In single-step GWAS, we identified a large proportion of overlapping genomic regions for the different FA, especially for UFA and MUFA, and for saturated and palmitic FA. One identical significantly associated SNP was identified for C18:0 and KET on BTA 15. However, there was no genomic segment simultaneously significantly affecting all trait categories ICF, FA, and KET. Nevertheless, some of the annotated potential candidate genes DGKA, IGFBP4, and CXCL8 play a role in lipid metabolism and fertility mechanisms, and influence production diseases in early lactation. Genetic and genomic associations indicate that Fourier-transform infrared spectroscopy FA concentrations in milk from the first official test-day are valuable predictors for KET and for ICF.
Klein SL
,Yin T
,Swalve HH
,König S
... -
《-》
-
Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits.
The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (-0.62 to -0.59) and with protein yield (-0.32 to -0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning of lactation were decreasing for long-chain and unsaturated fatty acid groups and increasing for short-chain fatty acids. Genetic correlations between fat percentage and fatty acids were increasing at the beginning of lactation for short- and medium-chain and saturated fatty acids, but slightly decreasing for long-chain and unsaturated fatty acid groups. These results can be used in defining fatty acid traits and breeding objectives.
Fleming A
,Schenkel FS
,Malchiodi F
,Ali RA
,Mallard B
,Sargolzaei M
,Jamrozik J
,Johnston J
,Miglior F
... -
《-》
-
Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows.
The objective of this study was to assess the phenotypic and genetic variability of production traits and milk fatty acid (FA) contents throughout lactation. Genetic parameters for milk, fat, and protein yields, fat and protein contents, and 19 groups and individual FA contents in milk were estimated for first-parity Holstein cows in the Walloon Region of Belgium using single-trait, test-day animal models and random regressions. Data included 130,285 records from 26,166 cows in 531 herds. Heritabilities indicated that de novo synthesized FA were under stronger genetic control than FA originating from the diet and from body fat mobilization. Estimates for saturated short- and medium-chain individual FA ranged from 0.35 for C4:0 to 0.44 for C8:0, whereas those for monounsaturated long-chain individual FA were lower (around 0.18). Moreover, de novo synthesized FA were more heritable in mid to late lactation. Approximate daily genetic correlations among traits were calculated as correlations between daily breeding values for days in milk between 5 and 305. Averaged daily genetic correlations between milk yield and FA contents did not vary strongly among FA (around -0.35) but they varied strongly across days in milk, especially in early lactation. Results indicate that cows selected for high milk yield in early lactation would have lower de novo synthesized FA contents in milk but a slightly higher content of C18:1 cis-9, indicating that such cows might mobilize body fat reserves. Genetic correlations among FA emphasized the combination of FA according to their origin: contents in milk of de novo FA were highly correlated with each other (from 0.64 to 0.99). Results also showed that genetic correlations between C18:1 cis-9 and other FA varied strongly during the first 100 d in milk and reinforced the statement that the release of long-chain FA inhibits FA synthesis in the mammary gland while the cow is in negative energy balance. Finally, results showed that the FA profile in milk changed during the lactation phenotypically and genetically, emphasizing the relationship between the physiological status of cow and milk composition.
Bastin C
,Gengler N
,Soyeurt H
《-》