-
Short communication: Time-dependent genetic parameters and single-step genome-wide association analyses for predicted milk fatty acid composition in Ayrshire and Jersey dairy cattle.
Milk fat content and fatty acid (FA) composition have great economic value to the dairy industry as they are directly associated with taste and chemical-physical characteristics of milk and dairy products. In addition, consumers' choices are not only based on the nutritional aspects of food, but also on products known to promote better health. Milk FA composition is also related to the metabolic status and physiological stages of cows and thus can also be used as indicator for other novel traits of interest (e.g., metabolic diseases and methane yield). Genetic selection is a promising alternative to manipulate milk FA composition. In this study, we aimed to (1) estimate time-dependent genetic parameters for 5 milk FA groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted based on milk mid-infrared spectroscopy, for Canadian Ayrshire and Jersey breeds, and (2) conduct a time-dependent, single-step genome-wide association study to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA. We analyzed 31,709 test-day records of 9,648 Ayrshire cows from 268 herds, and 34,341 records of 11,479 Jersey cows from 883 herds. The genomic database contained a total of 2,330 Ayrshire and 1,019 Jersey animals. The average daily heritability ranged from 0.18 (long-chain FA) to 0.34 (medium-chain FA) in Ayrshire, and from 0.25 (long-chain and unsaturated FA) to 0.52 (medium-chain and saturated FA) in Jersey. Important genomic regions were identified in Bos taurus autosomes BTA3, BTA5, BTA12, BTA13, BTA14, BTA16, BTA18, BTA20, and BTA21. The proportion of the variance explained by 20 adjacent SNP ranged from 0.71% (saturated FA) to 1.11% (long-chain FA) in Ayrshire, and from 0.70% (unsaturated FA) to 3.09% (medium-chain FA) in Jersey cattle. Important candidate genes and pathways were also identified, such as the PTK2 and TRAPPC9 genes, associated with milk fat percentage, and HMGCS, FGF10, and C6 genes, associated with fertility traits and immune response. Our findings on the genetic parameters and candidate genes contribute to a better understanding of the genetic architecture of milk FA composition in Ayrshire and Jersey dairy cattle.
Freitas PHF
,Oliveira HR
,Silva FF
,Fleming A
,Schenkel FS
,Miglior F
,Brito LF
... -
《-》
-
Genomic analyses for predicted milk fatty acid composition throughout lactation in North American Holstein cattle.
Milk fat composition has important implications in the nutritional and processing properties of milk. Additionally, milk fat composition is associated with cow physiological and health status. The main objectives of this study were (1) to estimate genetic parameters for 5 milk fatty acid (FA) groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted from milk infrared spectra using a large data set; (2) to predict genomic breeding values using a longitudinal single-step genomic BLUP approach; and (3) to conduct a single-step GWAS aiming to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA, and consequently, to understand the underlying biology of these traits. We used 629,769 test-day records of 201,465 first-parity Holstein cows from 6,105 herds. A total of 8,865 genotyped (Illumina BovineSNP50K BeadChip, Illumina, San Diego, CA) animals were considered for the genomic analyses. The average daily heritability ranged from 0.24 (unsaturated FA) to 0.47 (medium-chain and saturated FA). The reliability of the genomic breeding values ranged from 0.56 (long-chain fatty acid) to 0.74 (medium-chain fatty acid) when using the default τ and ω scaling parameters, whereas it ranged from 0.58 (long-chain fatty acid) to 0.73 (short-chain fatty acid) when using the optimal τ and ω values (i.e., τ = 1.5 and ω = 0.6), as defined in a previous study in the same population. Relevant chromosomal regions were identified in Bos taurus autosomes 5 and 14. The proportion of the variance explained by 20 adjacent single nucleotide polymorphisms ranged from 0.71% (saturated FA) to 15.12% (long-chain FA). Important candidate genes and pathways were also identified. In summary, our results contribute to a better understanding of the genetic architecture of predicted milk FA in dairy cattle and reinforce the relevance of using genomic information for genetic analyses of these traits.
Freitas PHF
,Oliveira HR
,Silva FF
,Fleming A
,Miglior F
,Schenkel FS
,Brito LF
... -
《-》
-
Differences in milk fat composition predicted by mid-infrared spectrometry among dairy cattle breeds in the Netherlands.
The aim of this study was to estimate breed differences in milk fatty acid (FA) profile among 5 dairy cattle breeds present in the Netherlands: Holstein-Friesian (HF), Meuse-Rhine-Yssel (MRY), Dutch Friesian (DF), Groningen White Headed (GWH), and Jersey (JER). For this purpose, total fat percentage and detailed FA contents in milk (14 individual FA and 14 groups of FA) predicted from mid-infrared spectra were used. Mid-infrared spectrometry profiles were collected during regular milk recording from a range of herds with different combinations of breeds, including both purebred and crossbred cows. The data set used for the analyses contained 41,404 records from a total of 24,445 cows. In total 7,626 cows were crossbreds belonging to the breeds HF, MRY, DF, GWH, and JER; 1,769 purebreds (≥87.5%) belonging to the breeds MRY, DF, GWH, and JER; and the other 15,050 cows were HF. Breed effects were estimated using a single-trait animal model. The content in milk of short-chain FA C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0 was higher for JER and the content in milk of C16:0 was lower for GWH compared with the other breeds; when adjusting for breed differences in fat percentage, however, not all breed differences were significant. Breed differences were also found for cis-9 C14:1, cis-9 C16:1, C18:0, and a number of C18 unsaturated FA. In general, differences in fat composition in milk between HF, MRY, and DF were not significant. Jerseys tended to produce more saturated FA, whereas GWH tended to produce relatively less saturated FA. After adjusting for differences in fat percentage, breed differences in detailed fat composition disappeared or became smaller for several short- and medium-chain FA, whereas for several long-chain unsaturated FA, more significant breed differences were found. This indicates that short- and medium-chain FA are for all breeds more related to total fat percentage than long-chain FA. In conclusion, between breed differences were found in detailed FA composition and content of individual FA. Especially, for FA produced through de novo synthesis (short-chain FA, C12:0, C14:0, and partly C16:0) differences were found for JER and GWH, compared with the breeds HF, MRY, and DF.
Maurice-Van Eijndhoven MHT
,Bovenhuis H
,Soyeurt H
,Calus MPL
... -
《-》
-
Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle.
We performed genome-wide association analyses for milk, fat, and protein yields and somatic cell score based on lactation stages in the first 3 parities of Canadian Ayrshire, Holstein, and Jersey cattle. The genome-wide association analyses were performed considering 3 different lactation stages for each trait and parity: from 5 to 95, from 96 to 215, and from 216 to 305 d in milk. Effects of single nucleotide polymorphisms (SNP) for each lactation stage, trait, parity, and breed were estimated by back-solving the direct breeding values estimated using the genomic best linear unbiased predictor and single-trait random regression test-day models containing only the fixed population average curve and the random genomic curves. To identify important genomic regions related to the analyzed lactation stages, traits, parities and breeds, moving windows (SNP-by-SNP) of 20 adjacent SNP explaining more than 0.30% of total genetic variance were selected for further analyses of candidate genes. A lower number of genomic windows with a relatively higher proportion of the explained genetic variance was found in the Holstein breed compared with the Ayrshire and Jersey breeds. Genomic regions associated with the analyzed traits were located on 12, 8, and 15 chromosomes for the Ayrshire, Holstein, and Jersey breeds, respectively. Especially for the Holstein breed, many of the identified candidate genes supported previous reports in the literature. However, well-known genes with major effects on milk production traits (e.g., diacylglycerol O-acyltransferase 1) showed contrasting results among lactation stages, traits, and parities of different breeds. Therefore, our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the analyzed traits across breeds, parities, and lactation stages. Further functional studies are needed to validate our findings in independent populations.
Oliveira HR
,Cant JP
,Brito LF
,Feitosa FLB
,Chud TCS
,Fonseca PAS
,Jamrozik J
,Silva FF
,Lourenco DAL
,Schenkel FS
... -
《-》
-
Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows.
The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows.
Atashi H
,Chen Y
,Wilmot H
,Vanderick S
,Hubin X
,Soyeurt H
,Gengler N
... -
《-》