A super-resolution framework for the reconstruction of T2-weighted (T2w) time-resolved (TR) 4DMRI using T1w TR-4DMRI as the guidance.

来自 PUBMED

作者:

Nie XSaleh ZKadbi MZakian KDeasy JRimner ALi G

展开

摘要:

The purpose of this study was to develop T2-weighted (T2w) time-resolved (TR) four-dimensional magnetic resonance imaging (4DMRI) reconstruction technique with higher soft-tissue contrast for multiple breathing cycle motion assessment by building a super-resolution (SR) framework using the T1w TR-4DMRI reconstruction as guidance. The multi-breath T1w TR-4DMRI was reconstructed by deforming a high-resolution (HR: 2 × 2 × 2 mm3 ) volumetric breath-hold (BH, 20s) three-dimensional magnetic resonance imaging (3DMRI) image to a series of low-resolution (LR: 5 × 5 × 5 mm3 ) 3D cine images at a 2Hz frame rate in free-breathing (FB, 40 s) using an enhanced Demons algorithm, namely [T1BH →FB] reconstruction. Within the same imaging session, respiratory-correlated (RC) T2w 4DMRI (2 × 2 × 2 mm3 ) was acquired based on an internal navigator to gain HR T2w (T2HR ) in three states (full exhalation and mid and full inhalation) in ~5 min. Minor binning artifacts in the RC-4DMRI were automatically identified based on voxel intensity correlation (VIC) between consecutive slices as outliers (VIC < VICmean -σ) and corrected by deforming the artifact slices to interpolated slices from the adjacent slices iteratively until no outliers were identified. A T2HR image with minimal deformation (<1 cm at the diaphragm) from the T1BH image was selected for multi-modal B-Spline deformable image registration (DIR) to establish the T2HR -T1BH voxel correspondence. Two approaches to reconstruct T2w TR-4DMRI were investigated: (A) T2HR →[T1BH →FB]: to deform T2w HR to T1w BH only as T1w TR-4DMRI was reconstructed, and combine the two displacement vector fields (DVFs) to reconstruct T2w TR-4DMRI, and (B) [T2HR ←T1BH ]→FB: to deform T1w BH to T2w HR first and apply the deformed T1w BH to reconstruct T2w TR-4DMRI. The reconstruction times were similar, 8-12 min per volume. To validate the two methods, T2w- and T1w-mapped 4D XCAT digital phantoms were utilized with three synthetic spherical tumors (ϕ = 2.0, 3.0, and 4.0 cm) in the lower or mid lobes as the ground truth to evaluate the tumor location (the center of mass, COM), size (volume ratio, %V), and shape (Dice index). Six lung cancer patients were scanned under an IRB-approved protocol and the T2w TR-4DMRI images reconstructed from the two methods were compared based on the preservation of the three tumor characteristics. The local tumor-contained image quality was also characterized using the VIC and structure similarity (SSIM) indexes. In the 4D digital phantom, excellent tumor alignment after T2HR -T1HR DIR is achieved: ∆COM = 0.8 ± 0.5 mm, %V = 1.06 ± 0.02, and Dice = 0.91 ± 0.03, in both deformation directions using the DIR-target image as the reference. In patients, binning artifacts are corrected with improved image quality: average VIC increases from 0.92 ± 0.03 to 0.95 ± 0.01. Both T2w TR-4DMRI reconstruction methods produce similar tumor alignment errors ∆COM = 2.9 ± 0.6 mm. However, method B ([T2HR ←T1BH ]→FB) produces superior results in preserving more T2w tumor features with a higher %V = 0.99 ± 0.03, Dice = 0.81 ± 0.06, VIC = 0.85 ± 0.06, and SSIM = 0.65 ± 0.10 in the T2w TR-4DMRI images. This study has demonstrated the feasibility of T2w TR-4DMRI reconstruction with high soft-tissue contrast and adequately-preserved tumor position, size, and shape in multiple breathing cycles. The T2w-centric DIR (method B) produces a superior solution for the SR-based framework of T2w TR-4DMRI reconstruction with highly preserved tumor characteristics and local image features, which are useful for tumor delineation and motion management in radiation therapy.

收起

展开

DOI:

10.1002/mp.14136

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(737)

参考文献(34)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读