Introduction of a pseudo demons force to enhance deformation range for robust reconstruction of super-resolution time-resolved 4DMRI.
摘要:
The purpose of this study was to enhance the deformation range of demons-based deformable image registration (DIR) for large respiration-induced organ motion in the reconstruction of time-resolved four-dimensional magnetic resonance imaging (TR-4DMRI) for multi-breath motion simulation. A demons-based DIR algorithm was modified to enhance the deformation range for TR-4DMRI reconstruction using the super-resolution approach. A pseudo demons force was introduced to accelerate the coarse deformation in a multi-resolution (n = 3) DIR approach. The intensity gradient of a voxel was applied to its neighboring (5 × 5 × 5) voxels with a weight of Gaussian probability profile (σ = 1 voxel) to extend the demons force, especially on those voxels that have little intensity gradience but high-intensity difference. A digital 4DMRI phantom with 3-8 cm diaphragmatic motions was used for DIR comparison. Six volunteers were scanned with two high-resolution (highR: 2 × 2 × 2 mm3 ) breath-hold (BH) 3DMR images at full inhalation (BHI) and full exhalation (BHE) and low-resolution (lowR: 5 × 5 × 5 mm3 ) free-breathing (FB) 3DMR cine images (2 Hz) under an IRB-approved protocol. A cross-consistency check (CCC) (BHI→FB←BHE), with voxel intensity correlation (VIC) and inverse consistency error (ICE), was introduced for cross-verification of TR-4DMRI reconstruction. Using the digital phantom, the maximum deformable magnitude is doubled using the modified DIR from 3 to 6 cm at the diaphragm. In six human subjects, the first 15-iteration DIR using the pseudo force deforms 200 ± 150% more than the original force, and succeeds in all 12 cases, whereas the original demons-based DIR failed in 67% of tested cases. Using the pseudo force, high VIC (>0.9) and small ICE (1.6 ± 0.6 mm) values are observed for DIR of BHI&BHE, BHI→FB, and BHE→FB. The CCC identifies four questionable cases, in which two cases need further DIR refinement, without missing true negative. The introduction of a pseudo demons force enhances the largest deformation magnitude up to 6 cm. The cross-consistency check ensures the quality of TR-4DMRI reconstruction. Further investigation is ongoing to fully characterize TR-4DMRI for potential multi-breathing-cycle radiotherapy simulation.
收起
展开
DOI:
10.1002/mp.13179
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(101)
参考文献(42)
引证文献(7)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无