Air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent for the analysis of ultraviolet filters in water samples by high performance liquid chromatography with the aid of response surface methodology.

来自 PUBMED

作者:

Zhang KLi SWang YFan JZhu G

展开

摘要:

For this work, a novel air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent (AA-LLME-SFDES), coupled with a high performance liquid chromatography (HPLC) method was developed for the detection of benzophenone and salicylate ultraviolet filters in water samples. Three types of fatty acid-based hydrophobic deep eutectic solvents (DESs) with low viscosity, low-density, and melting point close to room temperature were prepared and employed as extraction solvents. This air-assisted liquid-liquid microextraction was carried out in a glass centrifuge tube. Subsequently, the glass tube was introduced into ice-water bath and held for 3 min, during which the upper DES phase was solidified. The water phase was easily extracted using a syringe equipped with a long needle, and later, the glass tube was removed from ice-water bath. The solidified DES phase was immediately melted at room temperature and used for HPLC analysis. The response surface methodology was employed to optimize some influencing parameters such as the volume of the extraction solvent, the pH value of sample solution, the number of extraction cycles, and the addition of salt. A quadratic model, namely a central composite design, was used to replace the conventional single factor analysis. It was found that under optimal conditions, the limits of determination and quantification were 0.045-0.54 µg L-1 and 0.15-2.0 µg L-1, respectively. The relative standard deviations for inter-day (n = 5) and intra-day (n = 5) precision were ≤ 4.2%, whereas the enrichment factors for the ultraviolet filters were obtained from 41 to 50. Furthermore, this novel method was successfully employed for the detection of benzophenone and salicylate ultraviolet filters from real water samples. The recoveries ranged from 87.5% to 105.8%, whereas the RSDs were lower than 3.6%.

收起

展开

DOI:

10.1016/j.chroma.2020.460876

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(584)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读